
Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

October 6, 2014

Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

• Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

• For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

• Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

• For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

• Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

• For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)e mod N

• Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

• using only the public-key
• without knowing the plaintexts m1 and m2.

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)e mod N

• Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

• using only the public-key
• without knowing the plaintexts m1 and m2.

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Application: e-voting.
• Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

• Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

• c is enventually decrypted to recover m =
∑

i mi

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Application: e-voting.
• Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

• Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

• c is enventually decrypted to recover m =
∑

i mi

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.

Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Obviously, encryption must be probabilistic.

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Why is it important ?
• Universality: any Boolean circuit can be written with Xors and

Ands.
• Once you can homomorphically evaluate both a Xor and a

And, you can evaluate any Boolean circuit, any computable
function.

Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Obviously, encryption must be probabilistic.

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Why is it important ?
• Universality: any Boolean circuit can be written with Xors and

Ands.
• Once you can homomorphically evaluate both a Xor and a

And, you can evaluate any Boolean circuit, any computable
function.

Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Obviously, encryption must be probabilistic.

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Why is it important ?
• Universality: any Boolean circuit can be written with Xors and

Ands.
• Once you can homomorphically evaluate both a Xor and a

And, you can evaluate any Boolean circuit, any computable
function.

Outsourcing Computation

• The cloud receives some data m in encrypted form.
• It receives the ciphertexts ci corresponding to bits mi

• The cloud doesn’t know the mi ’s

• The cloud performs some computation f (m), but without
knowing m

• The computation of f is written as a Boolean circuit with Xors
and Ands

• Every Xor z = x ⊕ y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz

• Every And z ′ = x · y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz′

• Eventally the cloud obtains a ciphertext c for f (m)
• The user decrypts c to recover f (m)
• The cloud learns nothing about m

Outsourcing Computation

• The cloud receives some data m in encrypted form.
• It receives the ciphertexts ci corresponding to bits mi

• The cloud doesn’t know the mi ’s

• The cloud performs some computation f (m), but without
knowing m

• The computation of f is written as a Boolean circuit with Xors
and Ands

• Every Xor z = x ⊕ y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz

• Every And z ′ = x · y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz′

• Eventally the cloud obtains a ciphertext c for f (m)
• The user decrypts c to recover f (m)
• The cloud learns nothing about m

Outsourcing Computation

• The cloud receives some data m in encrypted form.
• It receives the ciphertexts ci corresponding to bits mi

• The cloud doesn’t know the mi ’s

• The cloud performs some computation f (m), but without
knowing m

• The computation of f is written as a Boolean circuit with Xors
and Ands

• Every Xor z = x ⊕ y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz

• Every And z ′ = x · y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz′

• Eventally the cloud obtains a ciphertext c for f (m)
• The user decrypts c to recover f (m)
• The cloud learns nothing about m

What fully homomorphic encryption brings you

• You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.

What fully homomorphic encryption brings you

• You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.

What fully homomorphic encryption brings you

• You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.

Cloud Computing

• Goal: cloud computing
• I encrypt my data before sending it to the cloud
• The cloud can still search, sort and edit my data on my behalf
• Data is kept in encrypted form in the cloud.
• The cloud learns nothing about my data

• The cloud returns encrypted answers
• that only I can decrypt

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• And many other papers...

• 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
• Public-key compression and modulus switching [CNT12]
• Batch and homomorphic evaluation of AES [CCKLLTY13].

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• And many other papers...

• 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
• Public-key compression and modulus switching [CNT12]
• Batch and homomorphic evaluation of AES [CCKLLTY13].

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• And many other papers...

• 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
• Public-key compression and modulus switching [CNT12]
• Batch and homomorphic evaluation of AES [CCKLLTY13].

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

Homomorphic Properties of DGHV

• Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

• c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

• Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

• c1 · c2 is an encryption of m1 ·m2

• Noise becomes twice larger.

Homomorphic Properties of DGHV

• Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

• c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

• Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

• c1 · c2 is an encryption of m1 ·m2

• Noise becomes twice larger.

Somewhat homomorphic scheme

• The number of multiplications is limited.
• Noise grows with the number of multiplications.
• Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ

Gentry’s technique

• To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

• Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

• Otherwise the noise becomes too large and decryption
becomes incorrect.

• Then, “squash” the decryption procedure:
• express the decryption function as a low degree polynomial in

the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).

Gentry’s technique

• To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

• Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

• Otherwise the noise becomes too large and decryption
becomes incorrect.

• Then, “squash” the decryption procedure:
• express the decryption function as a low degree polynomial in

the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).

Ciphertext refresh: bootstrapping
• Gentry’s breakthrough idea: refresh the ciphertext using the

decryption circuit homomorphically.
• Evaluate the decryption polynomial not on the bits of the

ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

• Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?
Encryption of
Plaintext bit

= Refreshed
Ciphertext

Ciphertext refresh

• Refreshed ciphertext:
• If the degree of the decryption polynomial is small enough, the

resulting noise in this new ciphertext can be smaller than in
the original ciphertext

• Fully homomorphic encryption:
• Given two refreshed ciphertexts one can apply again the

homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

• Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.

Ciphertext refresh

• Refreshed ciphertext:
• If the degree of the decryption polynomial is small enough, the

resulting noise in this new ciphertext can be smaller than in
the original ciphertext

• Fully homomorphic encryption:
• Given two refreshed ciphertexts one can apply again the

homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

• Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Public Key Size

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

• Public-key size: τ · γ = 2 · 1011 bits = 25 GB !
• In [CMNT11], with quadratic encryption, PK size of 1 GB.

DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !

DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !

DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !

DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !

Compressed Public Key

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

η ' 2 700 bits

δ1 =

δ2 =

δi =

δτ =

Compressed Public Key

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

Old PK: 25 GB

η ' 2 700 bits

δ1 =

δ2 =

δi =

δτ =

New PK: 3.4 MB !

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.

PK Generation
χi = H(seed , i)
δi = [χi]p + λi · p − ri
xi = χi − δi

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.

PK Generation
χi = H(seed , i)
δi = [χi]p + λi · p − ri
xi = χi − δi

Simulation in ROM
H(seed , i)← xi + δi
δi ← {0, 1}η+λ

xi = qi · p + ri

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

• Given polynomially many xi = p · qi + ri , find p.

• Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

• PACD is clearly easier than GACD.
• How much easier ?

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

• Given polynomially many xi = p · qi + ri , find p.

• Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

• PACD is clearly easier than GACD.
• How much easier ?

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

• Given polynomially many xi = p · qi + ri , find p.

• Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

• PACD is clearly easier than GACD.
• How much easier ?

Brute force attack on the noise

• Brute force attack on the noise.
• Given x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, one can

guess r1 and compute gcd(x0, x1 − r1) to recover p.
• Requires 2ρ gcd computation

• Countermeasure:
• Take a sufficiently large ρ

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• Better attack [CNT12]: Õ(2ρ) time and memory.

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• Better attack [CNT12]: Õ(2ρ) time and memory.

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• Better attack [CNT12]: Õ(2ρ) time and memory.

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• Better attack [CNT12]: Õ(2ρ) time and memory.

Better Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.

Better Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.

Better Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.

Better Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.

Better Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.

Approximate GCD attack

• Consider t integers: xi = p · qi + ri and x0 = p · q0.
• Consider a vector ~u orthogonal to the xi ’s:

t∑
i=1

ui · xi = 0 mod x0

• This gives
∑t

i=1 ui · ri = 0 mod p.

• If the ui ’s are sufficiently small, since the ri ’s are small this
equality will hold over Z.

• Such vector ~u can be found using LLL.

• By collecting many orthogonal vectors one can recover ~r and
eventually the secret key p

• Countermeasure
• The size γ of the xi ’s must be sufficiently large.

The DGHV scheme (simplified)
• Key generation:

• Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
• Size of p is η. Size of xi is γ. Size of ri is ρ.

• Encryption of a message m ∈ {0, 1}:
• Choose a random subset S ⊂ {1, 2, . . . , τ} and a random

integer r in (−2ρ
′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
∑
i∈S

xi mod x0

• Decryption:

c ≡ m + 2r + 2
∑
i∈S

ri (mod p)

• Output m← (c mod p) mod 2

The DGHV scheme (simplified)
• Key generation:

• Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
• Size of p is η. Size of xi is γ. Size of ri is ρ.

• Encryption of a message m ∈ {0, 1}:
• Choose a random subset S ⊂ {1, 2, . . . , τ} and a random

integer r in (−2ρ
′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
∑
i∈S

xi mod x0

• Decryption:

c ≡ m + 2r + 2
∑
i∈S

ri (mod p)

• Output m← (c mod p) mod 2

The DGHV scheme (simplified)
• Key generation:

• Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
• Size of p is η. Size of xi is γ. Size of ri is ρ.

• Encryption of a message m ∈ {0, 1}:
• Choose a random subset S ⊂ {1, 2, . . . , τ} and a random

integer r in (−2ρ
′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
∑
i∈S

xi mod x0

• Decryption:

c ≡ m + 2r + 2
∑
i∈S

ri (mod p)

• Output m← (c mod p) mod 2

The DGHV scheme (contd.)

• Noise in ciphertext:
• c = m + 2 · r ′ mod p where r ′ = r +

∑
i∈S

ri

• r ′ is the noise in the ciphertext.
• It must remain < p for correct decryption.

• Homomorphic addition: c3 ← c1 + c2 mod x0

• c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
• Works if noise r ′1 + r ′2 still less than p.

• Homomorphic multiplication: c3 ← c1 · c2 mod x0

• c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
• Works if noise r ′1 · r ′2 remains less than p.

• Somewhat homomorphic scheme
• Noise grows with every homomorphic addition or

multiplication.
• A limited number of homomorphic operations is supported.
• This limits the degree of the polynomial that can be applied on

ciphertexts.

The DGHV scheme (contd.)

• Noise in ciphertext:
• c = m + 2 · r ′ mod p where r ′ = r +

∑
i∈S

ri

• r ′ is the noise in the ciphertext.
• It must remain < p for correct decryption.

• Homomorphic addition: c3 ← c1 + c2 mod x0

• c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
• Works if noise r ′1 + r ′2 still less than p.

• Homomorphic multiplication: c3 ← c1 · c2 mod x0

• c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
• Works if noise r ′1 · r ′2 remains less than p.

• Somewhat homomorphic scheme
• Noise grows with every homomorphic addition or

multiplication.
• A limited number of homomorphic operations is supported.
• This limits the degree of the polynomial that can be applied on

ciphertexts.

The DGHV scheme (contd.)

• Noise in ciphertext:
• c = m + 2 · r ′ mod p where r ′ = r +

∑
i∈S

ri

• r ′ is the noise in the ciphertext.
• It must remain < p for correct decryption.

• Homomorphic addition: c3 ← c1 + c2 mod x0

• c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
• Works if noise r ′1 + r ′2 still less than p.

• Homomorphic multiplication: c3 ← c1 · c2 mod x0

• c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
• Works if noise r ′1 · r ′2 remains less than p.

• Somewhat homomorphic scheme
• Noise grows with every homomorphic addition or

multiplication.
• A limited number of homomorphic operations is supported.
• This limits the degree of the polynomial that can be applied on

ciphertexts.

The DGHV scheme (contd.)

• Noise in ciphertext:
• c = m + 2 · r ′ mod p where r ′ = r +

∑
i∈S

ri

• r ′ is the noise in the ciphertext.
• It must remain < p for correct decryption.

• Homomorphic addition: c3 ← c1 + c2 mod x0

• c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
• Works if noise r ′1 + r ′2 still less than p.

• Homomorphic multiplication: c3 ← c1 · c2 mod x0

• c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
• Works if noise r ′1 · r ′2 remains less than p.

• Somewhat homomorphic scheme
• Noise grows with every homomorphic addition or

multiplication.
• A limited number of homomorphic operations is supported.
• This limits the degree of the polynomial that can be applied on

ciphertexts.

The squashed scheme from DGHV

• The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

• Alternative decryption formula for c = q · p + 2r + m
• We have q = bc/pe and c = q + m (mod 2)
• Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε

The squashed scheme from DGHV

• The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

• Alternative decryption formula for c = q · p + 2r + m
• We have q = bc/pe and c = q + m (mod 2)
• Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε

The squashed scheme from DGHV

• The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

• Alternative decryption formula for c = q · p + 2r + m
• We have q = bc/pe and c = q + m (mod 2)
• Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε

Squashed decryption

• Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

• Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public κ-bit numbers yi , and sparse secret
si ∈ {0, 1}.

• Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2

Squashed decryption

• Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

• Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public κ-bit numbers yi , and sparse secret
si ∈ {0, 1}.

• Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2

Squashed decryption

• Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

• Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public κ-bit numbers yi , and sparse secret
si ∈ {0, 1}.

• Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2

Squashed decryption

• Alternative decryption equation:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · zi

⌉]
2

where zi = yi · c for public yi ’s

• Since si is sparse with H(si) = θ, only n = dlog2(θ + 1)e bits
of precision for zi = yi · c is required

• With θ = 15, only n = 4 bits of precision for zi = yi · c
• The decryption function can then be expressed as a

polynomial of low degree (30) in the si ’s.

Compressing the public-key

• Size of public-key
• In the squashed scheme, Θ = Õ(λ5) additional elements yi in

the public key, each of size κ = Õ(λ5) bits.
• Therefore this gives again a Õ(λ10)-bit public key, instead of
Õ(λ5) in our variant.

• Using a pseudo-random number generator:
• Generate Θ− 1 random integers ui ∈ [0, 2κ+1) for 2 ≤ i ≤ Θ,

using a pseudo-random generator f (se) where the seed se is
generated at random during key generation and made part of
the public key.

• Take s1 = 1 and generate u1 so that∑
i∈S

ui = xp mod 2κ+1

The decryption circuit

• We must compute:

m← c∗ −

⌊
Θ∑
i=i

si · zi

⌉
mod 2

• Trick from Gentry-Halevi:
• Split the Θ secret key bits into θ boxes of size B = Θ/θ each.
• Then only one secret key bit inside every box is equal to one

• New decryption formula: m← c∗ −
⌊

θ∑
k=1

(
B∑
i=1

sk,izk,i

)⌉
2

• The sum:

qk
def
=

B∑
i=1

sk,izk,i

is obtained by adding B numbers, only one being non-zero.
• To compute the j-th bit of qk it suffices to xor all the j-th bits

of the numbers sk,i · zk,i .

The decryption circuit

sb0
1 sb1

1

× =

Sb1

0
1

0

0
0

1

0

0

1

0

× 1 0 0 1 0
z1,1

× 0 0 1 1 0
z1,2

× 1 1 0 1 0

× 0 0 1 1 0
z1,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

011 1 0

sb0√
θ

sb1√
θ

× =

Sbθ

0
1

0

1
0

0

0

0

1

0

× 0 0 1 1 1
zθ,1

× 1 0 0 1 0
zθ,2

× 0 1 0 1 0

× 1 0 1 1 0
zθ,B

= 0 0 0 0 0

= 0 0 0 0 0

= 0 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

010 1 0

sb0
i sb1

j

× =

Sbk=(i−1)
√
θ+j

1
0

0

0
0

1

0

0

1

0

× 1 1 1 1 0
zk,1

× 0 0 0 1 1
zk,2

× 1 0 0 1 0

× 0 0 1 0 0
zk ,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 0 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

001 1 0

011 1 0

q1

001 1 0

qk

010 1 0

qθ

+

+

+

+

=

⊕

Plaintext bit

Grade School addition
• The decryption equation is now:

m← c∗ −

⌊
θ∑

k=1

qk

⌉
mod 2

• where the qk ’s are rational in [0, 2) with n bits of precision
after the binary point.

11111

11111

11111

248

359

79

15

15 815

Gentry’s Bootstrapping

• The decryption circuit
• Can now be expressed as a polynomial of small degree d in the

secret-key bits si , given the zi = c · yi .

m = Czi (s1, . . . , sΘ)

• To refresh a ciphertext:
• Publish an encryption of the secret-key bits σi = Epk(si)
• Homomorphically evaluate m = Czi (s1, . . . , sΘ), using the

encryptions σi = Epk(si)
• We get Epk(m), that is a new ciphertext but possibly with less

noise (a “recryption”).
• The new noise has size ' d · ρ and is independent of the initial

noise.

Constraints on the parameters

• ρ: size of noise
• ρ ≥ 37 bits to avoid brute-force attack on the noise

• η: size of p
• The squashed scheme has a decryption polynomial of degree

30.
• We must allow for an additional multiplication, so degree

d = 60
• η ≥ (d + 8)ρ = 2516 bits.

• γ: size of xi :
• γ ' 12 · 106 bits to avoid lattice attacks

• Public-key size:
• If we take τ = γ, we get a pk size of τ · γ = γ2 = 1.4 · 1014

bits. Initial scheme unpractical.
• We can actually take a much smaller τ ' 104.

PK size and timings

Instance λ ρ η γ pk size Recrypt

Toy 42 27 1026 150 ·103 77 KB 0.41 s

Small 52 41 1558 830 ·103 437 KB 4.5 s

Medium 62 56 2128 4.2 ·106 2.2 MB 51 s

Large 72 71 2698 19 ·106 10.3 MB 11 min

RLWE-based Schemes

• Parameters
• The polynomial ring Rq = Zq[x]/ < xn + 1 >, where n is a

power of 2.
• Addition and multiplication of polynomials are performed

modulo xn + 1 and prime q.

• Ciphertext ~c = (c0, c1) such that

c0 + s · c1 = 2e + m

• e ← χ, where χ is a narrow Gaussian noise distribution
• c1 ← Rq

• s ← χ is the secret key
• The message m is in Z2/ < xn + 1 >

• Decryption:
• Compute m = c0 + s · c1 (mod xn + 1, 2)

RLWE-based Schemes

• Parameters
• The polynomial ring Rq = Zq[x]/ < xn + 1 >, where n is a

power of 2.
• Addition and multiplication of polynomials are performed

modulo xn + 1 and prime q.

• Ciphertext ~c = (c0, c1) such that

c0 + s · c1 = 2e + m

• e ← χ, where χ is a narrow Gaussian noise distribution
• c1 ← Rq

• s ← χ is the secret key
• The message m is in Z2/ < xn + 1 >

• Decryption:
• Compute m = c0 + s · c1 (mod xn + 1, 2)

RLWE-based Schemes

• Parameters
• The polynomial ring Rq = Zq[x]/ < xn + 1 >, where n is a

power of 2.
• Addition and multiplication of polynomials are performed

modulo xn + 1 and prime q.

• Ciphertext ~c = (c0, c1) such that

c0 + s · c1 = 2e + m

• e ← χ, where χ is a narrow Gaussian noise distribution
• c1 ← Rq

• s ← χ is the secret key
• The message m is in Z2/ < xn + 1 >

• Decryption:
• Compute m = c0 + s · c1 (mod xn + 1, 2)

Somewhat homomorphic scheme

• Addition of ciphertexts:
• ~c = (c0, c1) with c0 + s · c1 = 2e + m

• ~c ′ = (c ′0, c
′
1) with c ′0 + s · c ′1 = 2e′ + m′

• (c0 + c ′0) + s · (c1 + c ′1) = 2(e + e′) + m + m′

• Multiplication of ciphertexts ~c and ~c ′:
• (c0 + s · c1) · (c ′0 + s · c ′1) = (2e +m) · (2e′ +m′) = 2e′′ +m ·m′

• (c0 + s ·c1) · (c ′0 + s ·c ′1) = c0 ·c ′0 + s · (c1 ·c ′0 +c0 ·c ′1) + s2 ·c1 ·c ′1
• Define ~c ′′ = (c ′′0 , c

′′
1 , c

′′
2) = (c0 · c ′0, c1 · c ′0 + c0 · c ′1, c1 · c ′1)

c ′′0 + c ′′1 · s + c ′′2 · s2 = 2e′′ + m ·m′

• The ciphertext now has 3 elements
• The ciphertext size grows exponentially with the multiplicative

depth

Somewhat homomorphic scheme

• Addition of ciphertexts:
• ~c = (c0, c1) with c0 + s · c1 = 2e + m

• ~c ′ = (c ′0, c
′
1) with c ′0 + s · c ′1 = 2e′ + m′

• (c0 + c ′0) + s · (c1 + c ′1) = 2(e + e′) + m + m′

• Multiplication of ciphertexts ~c and ~c ′:
• (c0 + s · c1) · (c ′0 + s · c ′1) = (2e +m) · (2e′ +m′) = 2e′′ +m ·m′

• (c0 + s ·c1) · (c ′0 + s ·c ′1) = c0 ·c ′0 + s · (c1 ·c ′0 +c0 ·c ′1) + s2 ·c1 ·c ′1
• Define ~c ′′ = (c ′′0 , c

′′
1 , c

′′
2) = (c0 · c ′0, c1 · c ′0 + c0 · c ′1, c1 · c ′1)

c ′′0 + c ′′1 · s + c ′′2 · s2 = 2e′′ + m ·m′

• The ciphertext now has 3 elements
• The ciphertext size grows exponentially with the multiplicative

depth

Public-key encryption with RLWE

• To encrypt m
• One needs a fresh pair (a, a · s + 2e)
• where a← Rq and e ← χ

• Idea from [BV11a]:
• Given one such pair (a, b) = (a, a · s + 2e), easy to

re-randomize and generate as many as needeed.
• (a′, b′) = (av + 2e′, bv + 2e′′) where v , e′ ← χ, e′′ ← χ′

• b′ = (as+2e)v+2e′′ = asv+2(ev+e′′) = a′s+2(ev+e′′−e′s)

RLWE Assumption

• RLWE Assumption
• Let (ai , ai · s + ei) for 1 ≤ i ≤ ` where ` = poly(λ), ai ← Ra,

s ← χ, ei ← χ.
• The sequence (ai , ai · s + ei) for 1 ≤ i ≤ ` is computationally

indistinguishable from (ai , ui) where ui ← Rq.

• Semantic security of ~c = (c0, c1) where c0 + s · c1 = 2e + m
• ~c = (−s · c1 − 2e −m, c1) is computationally indistinguishable

from (u −m, c1), where u ← Rq

• This implies semantic security.

Conclusion

• Fully homomorphic encryption is a very active research area.

• Main challenge: make FHE pratical !

• Recent developments
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]

