Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

October 6, 2014

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

 For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

 For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

 For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

 $c_1 = m_1^e \mod N$ $c_2 = m_2^e \mod N$ $\Rightarrow c = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$

- Homomorphic encryption: given c_1 and c_2 , we can compute the ciphertext c for $m_1 \cdot m_2 \mod N$
 - using only the public-key
 - without knowing the plaintexts m_1 and m_2 .

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N \implies c = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

- Homomorphic encryption: given c₁ and c₂, we can compute the ciphertext c for m₁ · m₂ mod N
 - using only the public-key
 - without knowing the plaintexts m_1 and m_2 .

Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Application: e-voting.
 - Voter *i* encrypts his vote $m_i \in \{0, 1\}$ into:

$$c_i = g^{m_i} \cdot z_i^N \mod N^2$$

• Votes can be aggregated using only the public-key:

$$c = \prod_i c_i = g^{\sum_i m_i} \cdot z \mod N^2$$

• c is enventually decrypted to recover $m = \sum_i m_i$

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Application: e-voting.
 - Voter *i* encrypts his vote $m_i \in \{0, 1\}$ into:

$$c_i = g^{m_i} \cdot z_i^N \mod N^2$$

• Votes can be aggregated using only the public-key:

$$c = \prod_i c_i = g^{\sum\limits_i m_i} \cdot z modes z modes N^2$$

• c is enventually decrypted to recover $m = \sum_i m_i$

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

 $c_1 = m_1^e \mod N$ $c_2 = m_2^e \mod N \implies c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$

Additively homomorphic: Paillier

$$egin{array}{ll} c_1 = g^{m_1} egin{array}{cl} {
m mod} & N^2 \ c_2 = g^{m_2} egin{array}{ll} {
m mod} & N^2 \end{array} \Rightarrow c_1 \cdot c_2 = g^{m_1+m_2} egin{array}{cl} {
m N} \ {
m mod} & N^2 \end{array}$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$egin{array}{ll} c_1 &= {m_1}^e \mod N \ c_2 &= {m_2}^e \mod N \end{array} \Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \end{array}$$

Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N \implies c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2 \ c_2 = g^{m_2} \mod N^2 \ \Rightarrow c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \dots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \dots db3265_{16}$
 - Obviously, encryption must be probabilistic.
- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.
- Why is it important ?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \dots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \dots db3265_{16}$
 - Obviously, encryption must be probabilistic.
- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.
- Why is it important ?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \dots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \dots db3265_{16}$
 - Obviously, encryption must be probabilistic.
- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.
- Why is it important ?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

Outsourcing Computation

- The cloud receives some data *m* in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn't know the m_i's
- The cloud performs some computation f(m), but without knowing m
 - The computation of *f* is written as a Boolean circuit with Xors and Ands
 - Every Xor z = x ⊕ y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And $z' = x \cdot y$ is homomorphically evaluated from the ciphertexts c_x and c_y , to get ciphertext $c_{z'}$
- Eventally the cloud obtains a ciphertext c for f(m)
 - The user decrypts *c* to recover *f*(*m*)
 - The cloud learns nothing about m

Outsourcing Computation

- The cloud receives some data *m* in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn't know the *m_i*'s
- The cloud performs some computation f(m), but without knowing m
 - The computation of *f* is written as a Boolean circuit with Xors and Ands
 - Every Xor z = x ⊕ y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And z' = x · y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_{z'}
- Eventally the cloud obtains a ciphertext c for f(m)
 - The user decrypts *c* to recover *f*(*m*)
 - The cloud learns nothing about m

Outsourcing Computation

- The cloud receives some data *m* in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn't know the *m_i*'s
- The cloud performs some computation f(m), but without knowing m
 - The computation of *f* is written as a Boolean circuit with Xors and Ands
 - Every Xor z = x ⊕ y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And z' = x · y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_{z'}
- Eventally the cloud obtains a ciphertext c for f(m)
 - The user decrypts c to recover f(m)
 - The cloud learns nothing about *m*

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don't want to disclose confidential information.
 - And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn't learn any information about my company.
- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don't want to disclose confidential information.
 - And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn't learn any information about my company.
- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don't want to disclose confidential information.
 - And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn't learn any information about my company.
- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.

Cloud Computing

- Goal: cloud computing
 - I encrypt my data before sending it to the cloud
 - The cloud can still search, sort and edit my data on my behalf
 - Data is kept in encrypted form in the cloud.
 - The cloud learns nothing about my data
- The cloud returns encrypted answers
 - that only I can decrypt

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

Homomorphic Properties of DGHV

Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \ c_2 = q_2 \cdot p + 2r_2 + m_2 \ \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$$

• $c_1 + c_2$ is an encryption of $m_1 + m_2 \mod 2 = m_1 \oplus m_2$

Multiplication:

 $c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

- $c_1 \cdot c_2$ is an encryption of $m_1 \cdot m_2$
- Noise becomes twice larger.

Homomorphic Properties of DGHV

• Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$$

• $c_1 + c_2$ is an encryption of $m_1 + m_2 \mod 2 = m_1 \oplus m_2$

Multiplication:

 $\begin{array}{l} c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \end{array} \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2 \end{array}$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

- $c_1 \cdot c_2$ is an encryption of $m_1 \cdot m_2$
- Noise becomes twice larger.

Somewhat homomorphic scheme

- The number of multiplications is limited.
 - Noise grows with the number of multiplications.
 - Noise must remain < p for correct decryption.

Gentry's technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 - Only a polynomial of small degree can be homomorphically applied on ciphertexts.
 - Otherwise the noise becomes too large and decryption becomes incorrect.
- Then, "squash" the decryption procedure:
 - express the decryption function as a low degree polynomial in the bits of the ciphertext *c* and the secret key *sk* (equivalently a boolean circuit of small depth).

Gentry's technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 - Only a polynomial of small degree can be homomorphically applied on ciphertexts.
 - Otherwise the noise becomes too large and decryption becomes incorrect.
- Then, "squash" the decryption procedure:
 - express the decryption function as a low degree polynomial in the bits of the ciphertext *c* and the secret key *sk* (equivalently a boolean circuit of small depth).

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
 - Evaluate the decryption polynomial not on the bits of the ciphertext *c* and the secret key *sk*, but homomorphically on the encryption of those bits.
 - Instead of recovering the bit plaintext *m*, one gets an encryption of this bit plaintext, *i.e.* yet another ciphertext for the same plaintext.

Ciphertext refresh

- Refreshed ciphertext:
 - If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext
- Fully homomorphic encryption:
 - Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
 - Using this "ciphertext refresh" procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.

Ciphertext refresh

- Refreshed ciphertext:
 - If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext
- Fully homomorphic encryption:
 - Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
 - Using this "ciphertext refresh" procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.

Public-key Encryption with DGHV

• Ciphertext

 $c = q \cdot p + 2r + m$

Public-key: a set of \(\tau\) encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.
Public-key Encryption with DGHV

• Ciphertext

$$c=q\cdot p+2r+m$$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

Public-key Encryption with DGHV

Ciphertext

$$c = q \cdot p + 2r + m$$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

Public Key Size

• Public-key size: $\tau \cdot \gamma = 2 \cdot 10^{11}$ bits = 25 GB !

• In [CMNT11], with quadratic encryption, PK size of 1 GB.

- Only store seed and the small correction δ.
- \ast Storage: $\simeq 2700$ bits instead of $2 \cdot 10^7$ bits 1

- Only store seed and the small correction δ.
- Storage: $\simeq 2\,700$ bits instead of $2\cdot 10^7$ bits !

- Only store *seed* and the small correction δ .
- Storage: $\simeq 2\,700$ bits instead of $2\cdot 10^7$ bits !

- Only store *seed* and the small correction δ .
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^7$ bits !

Compressed Public Key

Compressed Public Key

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - seed is part of the public-key, to recover the x_i's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - *seed* is part of the public-key, to recover the x_i 's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - *seed* is part of the public-key, to recover the x_i 's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

PK Generation

$$\chi_{i} = H(seed, i)$$

$$\delta_{i} = [\chi_{i}]_{p} + \lambda_{i} \cdot p - r_{i}$$

$$\chi_{i} = \chi_{i} - \delta_{i}$$

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - *seed* is part of the public-key, to recover the x_i 's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

Hardness assumption for semantic security

 Original DGHV scheme: secure under the General Approximate Common Divisor (GACD) assumption.

• Given polynomially many $x_i = p \cdot q_i + r_i$, find p.

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- PACD is clearly easier than GACD.
 - How much easier ?

Hardness assumption for semantic security

 Original DGHV scheme: secure under the General Approximate Common Divisor (GACD) assumption.

• Given polynomially many $x_i = p \cdot q_i + r_i$, find p.

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- PACD is clearly easier than GACD.
 - How much easier ?

Hardness assumption for semantic security

 Original DGHV scheme: secure under the General Approximate Common Divisor (GACD) assumption.

• Given polynomially many $x_i = p \cdot q_i + r_i$, find p.

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- PACD is clearly easier than GACD.
 - How much easier ?

Brute force attack on the noise

- Brute force attack on the noise.
 - Given $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ with $|r_1| < 2^{\rho}$, one can guess r_1 and compute $gcd(x_0, x_1 r_1)$ to recover p.
 - Requires 2^ρ gcd computation
- Countermeasure:
 - Take a sufficiently large ρ

- Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Brute force attack: 2^{ρ} GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p = \gcd\left(x_0, \prod_{i=0}^{2^p-1} (x_1 - i) \bmod x_0\right)$$

 Improved attack in Õ(2^{ρ/2}) time and memory by Chen and Nguyen at Eurocrypt 2012.

- Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Brute force attack: 2^ρ GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p = \gcd\left(x_0, \prod_{i=0}^{2^{\rho}-1} (x_1 - i) \bmod x_0\right)$$

 Improved attack in Õ(2^{ρ/2}) time and memory by Chen and Nguyen at Eurocrypt 2012.

- Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Brute force attack: 2^{ρ} GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p = \gcd\left(x_0, \prod_{i=0}^{2^{\rho}-1} (x_1 - i) \bmod x_0\right)$$

 Improved attack in O(2^{p/2}) time and memory by Chen and Nguyen at Eurocrypt 2012.

- Given x₀ = p ⋅ q₀ and polynomially many x_i = p ⋅ q_i + r_i, find p.
- Brute force attack: 2^{ρ} GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p = \gcd\left(x_0, \prod_{i=0}^{2^{\rho}-1} (x_1 - i) \bmod x_0\right)$$

• Improved attack in $\tilde{\mathcal{O}}(2^{\rho/2})$ time and memory by Chen and Nguyen at Eurocrypt 2012.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: 2² GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: $ilde{\mathcal{O}}(2^{3
 ho/2})$ time.
 - Guess r₁ and apply Chen-Nguyen on r₂
 - $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- Better attack [CNT12]: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: $2^{2\rho}$ GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: Õ(2^{3ρ/2}) time.
 - Guess r₁ and apply Chen-Nguyen on r₂
 - $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- Better attack [CNT12]: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: $2^{2\rho}$ GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: $ilde{\mathcal{O}}(2^{3
 ho/2})$ time.
 - Guess r_1 and apply Chen-Nguyen on r_2
 - $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- Better attack [CNT12]: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: $2^{2\rho}$ GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: $ilde{\mathcal{O}}(2^{3
 ho/2})$ time.
 - Guess r_1 and apply Chen-Nguyen on r_2
 - $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- Better attack [CNT12]: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with x₁ = p · q₁ + r₁ and x₂ = p · q₂ + r₂

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- Product over Z can be computed in O(2^e) time using a product tree.
- O(2^e) time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with x₁ = p · q₁ + r₁ and x₂ = p · q₂ + r₂

$$p| \gcd \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- Product over Z can be computed in Õ(2^ρ) time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with x₁ = p · q₁ + r₁ and x₂ = p · q₂ + r₂

$$p| \gcd \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- Product over Z can be computed in Õ(2^ρ) time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with x₁ = p · q₁ + r₁ and x₂ = p · q₂ + r₂

$$p| \gcd \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- Product over Z can be computed in Õ(2^ρ) time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with x₁ = p · q₁ + r₁ and x₂ = p · q₂ + r₂

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{
ho}-1} (x_1 - i), \prod_{i=0}^{2^{
ho}-1} (x_2 - i)
ight)$$

- Product over $\mathbb Z$ can be computed in $\tilde{\mathcal O}(2^\rho)$ time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - · Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

Approximate GCD attack

- Consider t integers: $x_i = p \cdot q_i + r_i$ and $x_0 = p \cdot q_0$.
 - Consider a vector \vec{u} orthogonal to the x_i 's:

$$\sum_{i=1}^t u_i \cdot x_i = 0 \mod x_0$$

• This gives
$$\sum_{i=1}^{t} u_i \cdot r_i = 0 \mod p$$
.

- If the u_i's are sufficiently small, since the r_i's are small this equality will hold over Z.
 - Such vector \vec{u} can be found using LLL.
- By collecting many orthogonal vectors one can recover \vec{r} and eventually the secret key p
- Countermeasure
 - The size γ of the x_i 's must be sufficiently large.

The DGHV scheme (simplified)

- Key generation:
 - Generate a set of τ public integers:

$$x_i = p \cdot q_i + r_i, \quad 1 \leq i \leq \tau$$

and $x_0 = p \cdot q_0$, where p is a secret prime.

- Size of p is η . Size of x_i is γ . Size of r_i is ρ .
- Encryption of a message $m \in \{0,1\}$:
 - Choose a random subset S ⊂ {1, 2, ..., τ} and a random integer r in (-2^{ρ'}, 2^{ρ'}), and output the ciphertext:

$$c = m + 2r + 2\sum_{i \in S} x_i \bmod x_0$$

• Decryption:

$$c \equiv m + 2r + 2\sum_{i \in S} r_i \pmod{p}$$

• Output $m \leftarrow (c \mod p) \mod 2$

The DGHV scheme (simplified)

- Key generation:
 - Generate a set of τ public integers:

$$x_i = p \cdot q_i + r_i, \quad 1 \leq i \leq \tau$$

and $x_0 = p \cdot q_0$, where p is a secret prime.

- Size of p is η . Size of x_i is γ . Size of r_i is ρ .
- Encryption of a message $m \in \{0, 1\}$:
 - Choose a random subset S ⊂ {1, 2, ..., τ} and a random integer r in (-2^{ρ'}, 2^{ρ'}), and output the ciphertext:

$$c = m + 2r + 2\sum_{i \in S} x_i \bmod x_0$$

• Decryption:

$$c \equiv m + 2r + 2\sum_{i \in S} r_i \pmod{p}$$

• Output $m \leftarrow (c \mod p) \mod 2$

The DGHV scheme (simplified)

- Key generation:
 - Generate a set of τ public integers:

$$x_i = p \cdot q_i + r_i, \quad 1 \leq i \leq \tau$$

and $x_0 = p \cdot q_0$, where p is a secret prime.

- Size of p is η . Size of x_i is γ . Size of r_i is ρ .
- Encryption of a message $m \in \{0, 1\}$:
 - Choose a random subset S ⊂ {1, 2, ..., τ} and a random integer r in (-2^{ρ'}, 2^{ρ'}), and output the ciphertext:

$$c = m + 2r + 2\sum_{i \in S} x_i \bmod x_0$$

Decryption:

$$c \equiv m + 2r + 2\sum_{i \in S} r_i \pmod{p}$$

• Output $m \leftarrow (c \mod p) \mod 2$

The DGHV scheme (contd.)

• Noise in ciphertext:

• $c = m + 2 \cdot r' \mod p$ where $r' = r + \sum_{i \in S} r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r_2' + m_2 \cdot r_1' + 2r_1' \cdot r_2') \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - A limited number of homomorphic operations is supported.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

The DGHV scheme (contd.)

• Noise in ciphertext:

• $c = m + 2 \cdot r' \mod p$ where $r' = r + \sum_{i \in S} r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r_2' + m_2 \cdot r_1' + 2r_1' \cdot r_2') \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - A limited number of homomorphic operations is supported.
 - This limits the degree of the polynomial that can be applied on ciphertexts.
The DGHV scheme (contd.)

Noise in ciphertext:

• $c = m + 2 \cdot r' \mod p$ where $r' = r + \sum_{i \in S} r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r_2' + m_2 \cdot r_1' + 2r_1' \cdot r_2') \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - A limited number of homomorphic operations is supported.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

The DGHV scheme (contd.)

• Noise in ciphertext:

• $c = m + 2 \cdot r' \mod p$ where $r' = r + \sum_{i \in S} r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r_2' + m_2 \cdot r_1' + 2r_1' \cdot r_2') \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - A limited number of homomorphic operations is supported.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

The squashed scheme from DGHV

- The basic decryption m ← (c mod p) mod 2 cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rfloor$ and $c = q + m \pmod{2}$
 - Therefore

 $m \leftarrow [c]_2 \oplus [[c \cdot (1/p)]]_2$

 Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

The squashed scheme from DGHV

- The basic decryption m ← (c mod p) mod 2 cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rceil$ and $c = q + m \pmod{2}$
 - Therefore

 $m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$

 Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

The squashed scheme from DGHV

- The basic decryption m ← (c mod p) mod 2 cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rceil$ and $c = q + m \pmod{2}$
 - Therefore

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

 Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

Alternative equation

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

• Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

with random public κ -bit numbers y_i , and sparse secret $s_i \in \{0, 1\}$.

Decryption becomes:

$$m \leftarrow [c]_2 \oplus \left[\left[\sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right] \right]_2$$

Alternative equation

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

• Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

with random public κ -bit numbers y_i , and sparse secret $s_i \in \{0, 1\}$.

Decryption becomes:

$$m \leftarrow [c]_2 \oplus \left[\left[\sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right] \right]_2$$

Alternative equation

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

• Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

with random public κ -bit numbers y_i , and sparse secret $s_i \in \{0, 1\}$.

• Decryption becomes:

1

$$m \leftarrow [c]_2 \oplus \left[\left\lfloor \sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right\rfloor \right]_2$$

• Alternative decryption equation:

$$m \leftarrow [c]_2 \oplus \left[\left\lfloor \sum_{i=1}^{\Theta} s_i \cdot z_i
ight
ceil
ight]_2$$

where $z_i = y_i \cdot c$ for public y_i 's

- Since s_i is sparse with H(s_i) = θ, only n = ⌈log₂(θ + 1)⌉ bits of precision for z_i = y_i · c is required
 - With $\theta = 15$, only n = 4 bits of precision for $z_i = y_i \cdot c$
- The decryption function can then be expressed as a polynomial of low degree (30) in the *s_i*'s.

Compressing the public-key

- Size of public-key
 - In the squashed scheme, Θ = Õ(λ⁵) additional elements y_i in the public key, each of size κ = Õ(λ⁵) bits.
 - Therefore this gives again a $\tilde{\mathcal{O}}(\lambda^{10})$ -bit public key, instead of $\tilde{\mathcal{O}}(\lambda^5)$ in our variant.
- Using a pseudo-random number generator:
 - Generate Θ − 1 random integers u_i ∈ [0, 2^{κ+1}) for 2 ≤ i ≤ Θ, using a pseudo-random generator f(se) where the seed se is generated at random during key generation and made part of the public key.
 - Take $s_1 = 1$ and generate u_1 so that

$$\sum_{i\in S} u_i = x_p \mod 2^{\kappa+1}$$

The decryption circuit

• We must compute:

$$m \leftarrow c^* - \left\lfloor \sum_{i=i}^{\Theta} s_i \cdot z_i \right
ceil \mod 2$$

- Trick from Gentry-Halevi:
 - Split the Θ secret key bits into θ boxes of size $B = \Theta/\theta$ each.
 - Then only one secret key bit inside every box is equal to one
- New decryption formula: $m \leftarrow c^* \left\lfloor \sum_{k=1}^{\theta} \left(\sum_{i=1}^{B} s_{k,i} z_{k,i} \right) \right\rfloor_2$
 - The sum:

$$q_k \stackrel{\mathrm{def}}{=} \sum_{i=1}^B s_{k,i} z_{k,i}$$

is obtained by adding B numbers, only one being non-zero.

 To compute the *j*-th bit of *q_k* it suffices to xor all the *j*-th bits of the numbers *s_{k,i}* · *z_{k,i}*.

The decryption circuit

Grade School addition

• The decryption equation is now:

$$m \leftarrow c^* - \left\lfloor \sum_{k=1}^{ heta} q_k
ight
ceil \mod 2$$

• where the q_k 's are rational in [0, 2) with *n* bits of precision after the binary point.

Gentry's Bootstrapping

- The decryption circuit
 - Can now be expressed as a polynomial of small degree d in the secret-key bits s_i, given the z_i = c · y_i.

$$m = C_{z_i}(s_1, \ldots, s_{\Theta})$$

- To refresh a ciphertext:
 - Publish an encryption of the secret-key bits $\sigma_i = E_{pk}(s_i)$
 - Homomorphically evaluate m = C_{zi}(s₁,..., s_Θ), using the encryptions σ_i = E_{pk}(s_i)
 - We get E_{pk}(m), that is a new ciphertext but possibly with less noise (a "recryption").
 - The new noise has size $\simeq d \cdot \rho$ and is independent of the initial noise.

Constraints on the parameters

- ρ: size of noise
 - $ho \geq$ 37 bits to avoid brute-force attack on the noise
- η: size of p
 - The squashed scheme has a decryption polynomial of degree 30.
 - We must allow for an additional multiplication, so degree d = 60
 - $\eta \ge (d+8)\rho = 2516$ bits.
- γ : size of x_i :
 - $\gamma\simeq 12\cdot 10^6$ bits to avoid lattice attacks
- Public-key size:
 - If we take $\tau = \gamma$, we get a pk size of $\tau \cdot \gamma = \gamma^2 = 1.4 \cdot 10^{14}$ bits. Initial scheme unpractical.
 - We can actually take a much smaller $\tau\simeq 10^4.$

PK size and timings

Instance	λ	ρ	η	γ	pk size	Recrypt
Тоу	42	27	1026	$150 \cdot 10^{3}$	77 KB	0.41 s
Small	52	41	1558	$830 \cdot 10^{3}$	437 KB	4.5 s
Medium	62	56	2128	4.2 ·10 ⁶	2.2 MB	51 s
Large	72	71	2698	$19 \cdot 10^{6}$	10.3 MB	11 min

RLWE-based Schemes

- Parameters
 - The polynomial ring $R_q = \mathbb{Z}_q[x]/ \langle x^n + 1 \rangle$, where *n* is a power of 2.
 - Addition and multiplication of polynomials are performed modulo xⁿ + 1 and prime q.
- Ciphertext $\vec{c} = (c_0, c_1)$ such that

$$c_0 + s \cdot c_1 = 2e + m$$

- $e \leftarrow \chi$, where χ is a narrow Gaussian noise distribution
- $c_1 \leftarrow R_q$
- $s \leftarrow \chi$ is the secret key
- The message m is in $\mathbb{Z}_2/<x^n+1>$
- Decryption:
 - Compute $m = c_0 + s \cdot c_1 \pmod{x^n + 1, 2}$

RLWE-based Schemes

- Parameters
 - The polynomial ring $R_q = \mathbb{Z}_q[x]/ < x^n + 1 >$, where *n* is a power of 2.
 - Addition and multiplication of polynomials are performed modulo xⁿ + 1 and prime q.
- Ciphertext $\vec{c} = (c_0, c_1)$ such that

$$c_0 + s \cdot c_1 = 2e + m$$

- $e \leftarrow \chi$, where χ is a narrow Gaussian noise distribution
- $c_1 \leftarrow R_q$
- $s \leftarrow \chi$ is the secret key
- The message m is in $\mathbb{Z}_2/<x^n+1>$
- Decryption:
 - Compute $m = c_0 + s \cdot c_1 \pmod{x^n + 1, 2}$

RLWE-based Schemes

- Parameters
 - The polynomial ring $R_q = \mathbb{Z}_q[x]/ < x^n + 1 >$, where *n* is a power of 2.
 - Addition and multiplication of polynomials are performed modulo xⁿ + 1 and prime q.
- Ciphertext $\vec{c} = (c_0, c_1)$ such that

$$c_0 + s \cdot c_1 = 2e + m$$

- $e \leftarrow \chi$, where χ is a narrow Gaussian noise distribution
- $c_1 \leftarrow R_q$
- $s \leftarrow \chi$ is the secret key
- The message m is in $\mathbb{Z}_2/<x^n+1>$
- Decryption:
 - Compute $m = c_0 + s \cdot c_1 \pmod{x^n + 1, 2}$

Somewhat homomorphic scheme

- Addition of ciphertexts:
 - $\vec{c} = (c_0, c_1)$ with $c_0 + s \cdot c_1 = 2e + m$
 - $\vec{c'} = (c'_0, c'_1)$ with $c'_0 + s \cdot c'_1 = 2e' + m'$
 - $(c_0 + c'_0) + s \cdot (c_1 + c'_1) = 2(e + e') + m + m'$

• Multiplication of ciphertexts \vec{c} and $\vec{c'}$:

•
$$(c_0 + s \cdot c_1) \cdot (c'_0 + s \cdot c'_1) = (2e + m) \cdot (2e' + m') = 2e'' + m \cdot m'$$

•
$$(c_0 + s \cdot c_1) \cdot (c'_0 + s \cdot c'_1) = c_0 \cdot c'_0 + s \cdot (c_1 \cdot c'_0 + c_0 \cdot c'_1) + s^2 \cdot c_1 \cdot c'_1$$

• Define
$$\vec{c''} = (c''_0, c''_1, c''_2) = (c_0 \cdot c'_0, c_1 \cdot c'_0 + c_0 \cdot c'_1, c_1 \cdot c'_1)$$

$$c_0'' + c_1'' \cdot s + c_2'' \cdot s^2 = 2e'' + m \cdot m'$$

- The ciphertext now has 3 elements
- The ciphertext size grows exponentially with the multiplicative depth

Somewhat homomorphic scheme

- Addition of ciphertexts:
 - $\vec{c} = (c_0, c_1)$ with $c_0 + s \cdot c_1 = 2e + m$
 - $\vec{c'} = (c'_0, c'_1)$ with $c'_0 + s \cdot c'_1 = 2e' + m'$
 - $(c_0 + c'_0) + s \cdot (c_1 + c'_1) = 2(e + e') + m + m'$
- Multiplication of ciphertexts \vec{c} and $\vec{c'}$:
 - $(c_0 + s \cdot c_1) \cdot (c'_0 + s \cdot c'_1) = (2e + m) \cdot (2e' + m') = 2e'' + m \cdot m'$ • $(c_0 + s \cdot c_1) \cdot (c'_0 + s \cdot c'_1) = c_0 \cdot c'_0 + c_0 \cdot c'_0 +$

•
$$(c_0 + s \cdot c_1) \cdot (c'_0 + s \cdot c'_1) = c_0 \cdot c'_0 + s \cdot (c_1 \cdot c'_0 + c_0 \cdot c'_1) + s^2 \cdot c_1 \cdot c'_1$$

• Define
$$c'' = (c''_0, c''_1, c''_2) = (c_0 \cdot c'_0, c_1 \cdot c'_0 + c_0 \cdot c'_1, c_1 \cdot c'_1)$$

$$c_0'' + c_1'' \cdot s + c_2'' \cdot s^2 = 2e'' + m \cdot m'$$

- The ciphertext now has 3 elements
- The ciphertext size grows exponentially with the multiplicative depth

Public-key encryption with RLWE

- To encrypt *m*
 - One needs a fresh pair $(a, a \cdot s + 2e)$
 - where $a \leftarrow R_q$ and $e \leftarrow \chi$
- Idea from [BV11a]:
 - Given one such pair $(a, b) = (a, a \cdot s + 2e)$, easy to re-randomize and generate as many as needeed.

•
$$(a',b') = (av + 2e', bv + 2e'')$$
 where $v, e' \leftarrow \chi, e'' \leftarrow \chi'$

•
$$b' = (as+2e)v+2e'' = asv+2(ev+e'') = a's+2(ev+e''-e's)$$

RLWE Assumption

- RLWE Assumption
 - Let $(a_i, a_i \cdot s + e_i)$ for $1 \le i \le \ell$ where $\ell = \text{poly}(\lambda)$, $a_i \leftarrow R_a$, $s \leftarrow \chi$, $e_i \leftarrow \chi$.
 - The sequence (a_i, a_i · s + e_i) for 1 ≤ i ≤ ℓ is computationally indistinguishable from (a_i, u_i) where u_i ← R_q.
- Semantic security of $\vec{c} = (c_0, c_1)$ where $c_0 + s \cdot c_1 = 2e + m$
 - $\vec{c} = (-s \cdot c_1 2e m, c_1)$ is computationally indistinguishable from $(u m, c_1)$, where $u \leftarrow R_q$
 - This implies semantic security.

Conclusion

- Fully homomorphic encryption is a very active research area.
- Main challenge: make FHE pratical !
- Recent developments
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]