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Homomorphic Encryption

e Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

e Normally, this is not possible.

AESk(m1) = 0x3c7317c6bcb634a4ad8479c64714£4£8
AESk(ma) = 0x7619884e1961b051belaad07dabcac2c
AESK(ml ) m2) = 7

e For some cryptosystems with algebraic structure, this is
possible. For example RSA:

1 = m;® mod N
== (my-m)® mod N
¢ = my* mod N
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Homomorphic Encryption with RSA

e Multiplicative property of RSA.

c1 = m;® mod N
:>c:c1-<:2:(m1‘m2)emodN
¢ = my* mod N

e Homomorphic encryption: given ¢; and ¢, we can compute
the ciphertext ¢ for my - my mod N
e using only the public-key
e without knowing the plaintexts m; and ms.
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Paillier Cryptosystem

e Additively homomorphic: Paillier cryptosystem

— g™ mod N2
1 =8 "~ mo S o= gm1+m2 V] mod N2
o = g™ mod N?

e Application: e-voting.
e Voter i encrypts his vote m; € {0, 1} into:

ci=g™m -z mod N?

o Votes can be aggregated using only the public-key:

c—Hc, i vzmodN2

e c is enventually decrypted to recover m= ). m;
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Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

1 = m;® mod N
== (m-m)® mod N
¢ = my* mod N

e Additively homomorphic: Paillier

c1 = g™ mod N?
=16 = g’"1+m2 M mod N2
o = g™ mod N?

e Fully homomorphic: homomorphic for both addition and
multiplication
e Open problem until Gentry's breakthrough in 2009.
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Fully homomorphic public-key encryption

e We restrict ourselves to public-key encryption of a single bit:
o 0 — 203ef6124...23ab8716
e 1 — b327653cl...db3265:6
e Obviously, encryption must be probabilistic.
e Fully homomorphic property
e Given E(bg) and E(by), one can compute E(by @ by) and
E(bg - by) without knowing the private-key.
e Why is it important ?
e Universality: any Boolean circuit can be written with Xors and

Ands.
e Once you can homomorphically evaluate both a Xor and a
And, you can evaluate any Boolean circuit, any computable

function.
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Outsourcing Computation

e The cloud receives some data m in encrypted form.
o |t receives the ciphertexts ¢; corresponding to bits m;
e The cloud doesn’'t know the m;'s
e The cloud performs some computation f(m), but without
knowing m
e The computation of f is written as a Boolean circuit with Xors
and Ands
e Every Xor z = x & y is homomorphically evaluated from the
ciphertexts c, and ¢, to get ciphertext c,
e Every And z’ = x - y is homomorphically evaluated from the
ciphertexts c, and ¢, to get ciphertext c,/

e Eventally the cloud obtains a ciphertext ¢ for f(m)

e The user decrypts c to recover f(m)
e The cloud learns nothing about m
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e You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

e | want to know the future stock price of my company, but |
don’t want to disclose confidential information.
e And you don't want to give me your software containing secret
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What fully homomorphic encryption brings you

You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.
e | want to know the future stock price of my company, but |
don't want to disclose confidential information.
e And you don't want to give me your software containing secret
formulas.
e Using homomorphic encryption:
e | encrypt all the inputs using fully homomorphic encryption
and send them to you in encrypted form.
e You process all my inputs, viewing your software as a circuit.
e You send me the result, still encrypted.
o | decrypt the result and get the predicted stock price.
e You didn't learn any information about my company.

e More generally:
e Cool buzzwords like secure cloud computing.
e Cool mathematical challenges.



Cloud Computing

e Goal: cloud computing
e | encrypt my data before sending it to the cloud
e The cloud can still search, sort and edit my data on my behalf
e Data is kept in encrypted form in the cloud.
e The cloud learns nothing about my data
e The cloud returns encrypted answers
e that only | can decrypt
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Fully Homomorphic Encryption Schemes

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

e Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

e 2. RLWE schemes [BV11a,BV11b].
e FHE without bootstrapping (modulus switching) [BGV11]
e Batch FHE [GHS12]
o Implementation with homomorphic evaluation of AES [GHS12]
e And many other papers...
e 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
e Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

e Public-key compression and modulus switching [CNT12]
e Batch and homomorphic evaluation of AES [CCKLLTY13].
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The DGHV Scheme

e Ciphertext for m € {0,1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.
e Decryption:
(c mod p) mod2=m
e Parameters:
vy ~2-107 bits
p: n=~2700 bits

c=[_J [ |

r: p~T71 bits
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Homomorphic Properties of DGHV
e Addition:

a=q-p+2n+m / /

=a+o=q -p+2r+m+m
=g p+2rn+m 1re=49-p 1 m
e 1 + ¢ is an encryption of m; + my; mod 2 = my  my

e Multiplication:

a=q-p+2n+m

N o .
=g p+2rn+m 1 Q=g -p+2r +m-m

with
"' =2rrm 4+ rnm+ rnm

® (1 - ¢ is an encryption of my - my
e Noise becomes twice larger.



Somewhat homomorphic scheme

e The number of multiplications is limited.

e Noise grows with the number of multiplications.
e Noise must remain < p for correct decryption.
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e Only a polynomial of small degree can be homomorphically
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becomes incorrect.



Gentry's technique

e To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

e Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

e Otherwise the noise becomes too large and decryption
becomes incorrect.

e Then, “squash” the decryption procedure:

e express the decryption function as a low degree polynomial in
the bits of the ciphertext ¢ and the secret key sk (equivalently
a boolean circuit of small depth).



Ciphertext refresh: bootstrapping

o Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

e Evaluate the decryption polynomial not on the bits of the
ciphertext ¢ and the secret key sk, but homomorphically on
the encryption of those bits.

e |nstead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Encryption of

Ciphertext bits Secret key bits Ciphertext bits secret key bits

O} Oat-me oty a0t

Decryption Decryption
Circuit Circuit

=

Encryption of __ Refreshed

Plaintext -
aintex Plaintext bit Ciphertext

bit
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o Refreshed ciphertext:
o If the degree of the decryption polynomial is small enough, the
resulting noise in this new ciphertext can be smaller than in
the original ciphertext



Ciphertext refresh

o Refreshed ciphertext:

o If the degree of the decryption polynomial is small enough, the
resulting noise in this new ciphertext can be smaller than in
the original ciphertext

e Fully homomorphic encryption:

o Given two refreshed ciphertexts one can apply again the
homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

e Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.
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Public-key Encryption with DGHV

e Ciphertext
c=q-p+2r+m

e Public-key: a set of 7 encryptions of 0's.
Xj = qi-p+2r

e Public-key encryption:

-
c:m—|—2r—|—25;-x;
i=1

for random ¢; € {0,1}.



T~ 10*

Public Key Size

v~ 2107 bits
xi=[_J [ ]
x=[_| [ ]
5= ' u
="} — n

e Public-key size: 7 -+ =2 - 10 bits = 25 GB !

e In [CMNT11], with quadratic encryption, PK size of 1 GB.
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DGHV Ciphertext Compression

e Ciphertext: c=q-p+2r+m

~ =~ 2107 bits

p: 1=~ 2700 bits

c=[_1J 1 |

r: /;:—7»1 bits
e Compute a pseudo-random x = f(seed) of v bits.

x=[_J |
0=x—2r—mmodp [ ]

c=x-d_J | [ |

e Only store seed and the small correction 4.
e Storage: ~ 2700 bits instead of 2 - 107 bits !



T ~10*

Compressed Public Key

vy =~2.107 bits

7 =~ 2700 bits



Compressed Public Key

v ~2-107 bits nms
xx=[_|J | ] a=[__1]
o =[_J | ] =]
T~ 10*
x=[ | ] =L__1
x = ' | [] T —

Old PK: 25 GB New PK: 3.4 MB !
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Security of Compressed PK

e Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.
e Approximate-gcd problem: given a set of x; = q; - p+ r;,
recover p.

e Compressed public key

e seed is part of the public-key, to recover the x;'s, so we cannot
argue that f(seed) is pseudo-random.

e Security in the random oracle model only, still based on
approximate-gcd.

PK Generation Simulation in ROM
Xi = H(seed, i) H(seed, i) < x; + §;
o = [Xi]p +Xi-p—ri O {07 1}""_A

Xj = Xi — 0; Xi=qi-ptr
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Hardness assumption for semantic security

e Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

e Given polynomially many x; = p- g; + r;, find p.
o Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.
e Given xg = p- qg and polynomially many x; = p- g; + r;, find p.
e PACD is clearly easier than GACD.

e How much easier ?



Brute force attack on the noise

e Brute force attack on the noise.
e Given xg = qo-p and x; = g1 - p+ r with |r1| < 2P, one can
guess r; and compute ged(xg, X1 — r1) to recover p.
e Requires 2” gcd computation

e Countermeasure:
o Take a sufficiently large p
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Solving PACD

Given xg = p - qo and polynomially many x; = p- g; + r;, find
p.
Brute force attack: 2 GCD computations.

e withxg=¢qo-pandxy =q1-p+rnand 0<n <2°.
Variant suggested by Phong Nguyen, still in O(2°):

201
p = ged (xo, H (x1 — i) mod xo>
i=0

Improved attack in O(2#/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.



Solving GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant without xp = qo - p.



Solving GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant without xp = qo - p.

e Brute force attack: 2%? GCD computations.
e Fromxy=p-gt+nandxx=p-g+n



Solving GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant without xp = qo - p.
e Brute force attack: 2%? GCD computations.
e Fromxy=p-gt+nandxx=p-g+n
e Using Chen-Nguyen attack: O(2%%/2) time.
e Guess r; and apply Chen-Nguyen on r;
o O(2°) - O(2°/2) = O(2%0/2) time and O(2°/%) memory.



Solving GACD

Given polynomially many x; = p - q; + r;, find p.
e Variant without xp = qo - p.
Brute force attack: 2% GCD computations.
e Fromxy=p-gt+nandxx=p-g+n
Using Chen-Nguyen attack: O(237/2) time.
e Guess r; and apply Chen-Nguyen on r;
o O(2°) - O(2°/2) = O(2%0/2) time and O(2°/%) memory.
Better attack [CNT12]: O(2”) time and memory.



Better Attack against GACD

e Given polynomially many x; = p- g; + r;, find p.



Better Attack against GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant of the previous equation with x; = p-q; + 1 and
X2=pP-q2+n

20_1 2P —1
p|gcd (H (x1 — i), H (x2 — ’))

i=0 i=0



Better Attack against GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant of the previous equation with x; = p-q; + 1 and
X2=pP-q2+n

20_1 2P —1
p|gcd (H (x1 — i), H (x2 — ’))

i=0 i=0

e Product over Z can be computed in O(27) time using a
product tree.



Better Attack against GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant of the previous equation with x; = p-q; + 1 and
X2=pP-q2+n

2r—1 2r—1

p| ged (H (x1 — i), H (x2 — /))
i=0 i=0

e Product over Z can be computed in O(27) time using a

product tree.
e O(27) time and memory



Better Attack against GACD

e Given polynomially many x; = p- g; + r;, find p.
e Variant of the previous equation with x; = p-q; + 1 and
X2=pP-q2+n

20_1 201
p|gcd (H (x1 — i), H (x2 — ’))
i=0

i=0

e Product over Z can be computed in O(27) time using a
product tree.
e O(27) time and memory
e Problem: many parasitic factors.

e Can be eliminated by taking the gcd with more products,
e and by dividing by B! for B ~ 2°.



Approximate GCD attack

Consider t integers: x; = p-qg;+ ri and xg = p - qo-
e Consider a vector i orthogonal to the x;’s:

t
g ui-x; =0 mod xg

i=1

e This gives > u;-r; =0 mod p.
If the u;'s are sufficiently small, since the r;'s are small this
equality will hold over Z.

e Such vector i can be found using LLL.
By collecting many orthogonal vectors one can recover 7 and
eventually the secret key p
Countermeasure

e The size v of the x;'s must be sufficiently large.
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The DGHV scheme (simplified)

o Key generation:
e Generate a set of 7 public integers:

xi=p-q+r, 1<i<T

and xp = p - qo, Where p is a secret prime.
o Size of pis n. Size of x; is . Size of r; is p.
e Encryption of a message m € {0,1}:
e Choose a random subset S C {1,2,...,7} and a random
integer r in (—2”/7 29,), and output the ciphertext:

c:m—|—2r+2Zx,- mod xg
ieS

e Decryption:

c5m+2r+2Zr,- (mod p)
ieS

e Output m < (¢ mod p) mod 2
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The DGHV scheme (contd.)

Noise in ciphertext:

e c=m+2-r modpwherer'=r+3 r
i€s

e r’ is the noise in the ciphertext.

e It must remain < p for correct decryption.

Homomorphic addition: ¢3 < ¢c1 + ¢ mod Xxg
e ct+c=m+m+2(rf+r) modp
e Works if noise r{ + rj still less than p.
Homomorphic multiplication: ¢3 < ¢1 - ¢ mod xg
e cira=m-my+2(my-ry+my-r]+2r-ry) modp
e Works if noise r{ - rj remains less than p.
Somewhat homomorphic scheme

e Noise grows with every homomorphic addition or
multiplication.

e A limited number of homomorphic operations is supported.

e This limits the degree of the polynomial that can be applied on
ciphertexts.
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e The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
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The squashed scheme from DGHV

e The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
e Alternative decryption formula forc=q-p+2r+m

e We have g = |¢/p] and ¢ = g+ m (mod 2)
e Therefore
m  [cla ® [[c - (1/p)]]2

e Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

o
1/p=> si-yi+e
i=1
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e Alternative equation
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Squashed decryption

e Alternative equation

m « [cr @ [[c- (1/p)]]2

e Secret-share 1/p as a sparse subset sum:

©
1/p=> si-yi+te
i=1
with random public k-bit numbers y;, and sparse secret

si € {0,1}.

e Decryption becomes:

m < [c]o ®




Squashed decryption

o Alternative decryption equation:

(€]
i=1 2
where z; = y; - ¢ for public y;'s

e Since s; is sparse with H(s;) = 6, only n = [log,(6 + 1)] bits
of precision for z; = y; - ¢ is required
e With § = 15, only n = 4 bits of precision for z; = y; - ¢

m < [c|2 @

e The decryption function can then be expressed as a
polynomial of low degree (30) in the s;'s.



Compressing the public-key

e Size of public-key

o In the squashed scheme, © = O()\®) additional elements y; in
the public key, each of size k = O(\®) bits.

o Therefore this gives again a O(A1°)-bit public key, instead of
AO()\%) in our variant.

e Using a pseudo-random number generator:

o Generate © — 1 random integers u; € [0,27%1) for 2 </ < ©,
using a pseudo-random generator f(se) where the seed se is
generated at random during key generation and made part of
the public key.

e Take s; =1 and generate u; so that

Z ui =x, mod 2Rt
i€S



The decryption circuit

e We must compute:

[C)
m+«—c" — \‘Zsi-z,--‘ mod 2
i=i

e Trick from Gentry-Halevi:

e Split the © secret key bits into 6 boxes of size B = ©/6 each.
e Then only one secret key bit inside every box is equal to one

9 /B
e New decryption formula: m < ¢* — {Z (Z sk7,-zk,,->-‘
k=1 \i=1 2

e The sum:
B
def
k. = E Sk,iZk,i
i=1

is obtained by adding B numbers, only one being non-zero.
e To compute the j-th bit of g it suffices to xor all the j-th bits
of the numbers sy ; - z ;.



X

The decryption circuit

Sby

0] 10010 - 00000
bt B

o|x 00110 = 00000
0 . h .
0 .
i trere - 11010
1 .

o]« ooi10 =

Sby_i-1)75

0]x 11110 -
ab!

o] o011 -
0 . :
0 .
Jd || x 1e010 =
1

o] 00100 =

Sb,
- 0]x 00111 - 00000
7 0|« 10010 = 00000
1 . h .
H .
i) erore = w1010
0 .

o]« 10110 = 00000

0101 0—d




Grade School addition

e The decryption equation is now:

9
m<+«c* — {qu-‘ mod 2
k=1

e where the gx's are rational in [0,2) with n bits of precision
after the binary point.

C_ O
C O+
EEDE+
@ED~
Ooooo
Ooooo
ooooo
i



Gentry's Bootstrapping

e The decryption circuit
e Can now be expressed as a polynomial of small degree d in the
secret-key bits s;, given the z; = ¢ - y;.

m = CZI.(S;[, AN 7S@)
e To refresh a ciphertext:
e Publish an encryption of the secret-key bits o; = Epi(s;i)
e Homomorphically evaluate m = C,(sy, ..., Se), using the
encryptions o; = Ep(si)

e We get E,i(m), that is a new ciphertext but possibly with less
noise (a “recryption”).

e The new noise has size >~ d - p and is independent of the initial
noise.



Constraints on the parameters

p: size of noise
e p > 37 bits to avoid brute-force attack on the noise
n: size of p
e The squashed scheme has a decryption polynomial of degree
30.
e We must allow for an additional multiplication, so degree
d =60
e 1> (d+ 8)p=2516 bits.
~: size of x;:
e v~ 12.10° bits to avoid lattice attacks
Public-key size:
e If we take 7 =, we get a pk size of 7-7 =~% = 1.4 - 10*
bits. Initial scheme unpractical.
e We can actually take a much smaller 7 ~ 10*.



PK size and timings

Instance | A | p | n | v || pksize | Recrypt |
Toy 42 [ 2711026 | 150 -103 || 77 KB | 0.41s
Small 52 | 41 | 1558 | 830 -103 || 437 KB | 455
Medium | 62 | 56 | 2128 | 4.2 -10° || 2.2 MB 51s
Large 72 [ 71 [ 2698 | 19 -10° || 10.3 MB | 11 min




RLWE-based Schemes

e Parameters
e The polynomial ring Ry = Zg[x]/ < x" +1 >, where nis a
power of 2.

e Addition and multiplication of polynomials are performed
modulo x" 4+ 1 and prime q.
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RLWE-based Schemes

e Parameters
e The polynomial ring Ry = Zg[x]/ < x" +1 >, where nis a
power of 2.
e Addition and multiplication of polynomials are performed
modulo x" 4+ 1 and prime q.

e Ciphertext ¢ = (cp, 1) such that
Co+s-cg=2e+m

e e < x, where x is a narrow Gaussian noise distribution
o+ Ry
e 5 < x is the secret key
e The message misin Zy/ < x"+1 >
e Decryption:
e Compute m=c¢y+s-¢ (mod x"+1,2)



Somewhat homomorphic scheme

e Addition of ciphertexts:
o ¢=(cp,c1)wWithcg+s-cp=2e+m
o ¢ =(c)c}) with ¢ +s- ¢} =2¢ +m’
e (co+c))+s-(aa+tc)=2e+e)+m+m



Somewhat homomorphic scheme

e Addition of ciphertexts:
o ¢=(cp,c1)wWithcg+s-cp=2e+m
o ¢/ =(c),c) withf+s-¢f =2 +m'
e (o+¢g)+s-(at+c)=2(e+e)+m+m
e Multiplication of ciphertexts ¢ and c:
o (co+s-a) (g+s-c)=2e+m)-(2e'+m')=2¢"+m-m’
e (co+s-ca)(g+s-c)=co-ch+s-(c1-cg+co-c])+s*c1-¢f
Define ¢’/ = (¢, ¢/, c)) = (co - c,c1- b+ o ¢ciye1- )

&+ s+c)-sP=2e"+m-m

The ciphertext now has 3 elements
The ciphertext size grows exponentially with the multiplicative
depth



Public-key encryption with RLWE

e To encrypt m

e One needs a fresh pair (a,a- s + 2e)
e where a < Ry and e < x
e ldea from [BV11a]:
e Given one such pair (a, b) = (a,a- s + 2e), easy to
re-randomize and generate as many as needeed.
o (a',b)=(av+2€,bv+2e") where v,e + x, €’ + ¥’
o b = (as+2e)v+2e” = asv+2(ev+e”’) = a's+2(ev+e’—¢€'s)



RLWE Assumption

e RLWE Assumption
o Let (aj,a; - s+ ¢) for 1 < i < { where £ = poly()), a; + R.,
S X, € < X.
e The sequence (a;,a; - s+ ¢;) for 1 < i < £ is computationally
indistinguishable from (a;, u;) where u; < Ry.
e Semantic security of ¢ = (cp, 1) where g +s-¢c1 =2e+m
o C=(—s-c —2e—m,c) is computationally indistinguishable
from (u— m, c1), where u + R,
e This implies semantic security.



Conclusion

e Fully homomorphic encryption is a very active research area.
e Main challenge: make FHE pratical !

e Recent developments

e FHE without bootstrapping (modulus switching) [BGV11]
e Batch FHE [GHS12]
e Implementation with homomorphic evaluation of AES [GHS12]



