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Public-key encryption

@ Public-key encryption: two keys.

@ One key is made public and used to encrypt.

@ The other key is kept private and enables to decrypt.
@ Alice wants to send a message to Bob:

@ She encrypts it using Bob’s public-key.

@ Only Bob can decrypt it using his own private-key.

@ Alice and Bob do not need to meet to establish a secure
communication.

@ Security:
@ It must be difficult to recover the private-key from the
public-key
@ but not enough in practice.
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The RSA algorithm

@ The RSA algorithm is the most widely-used public-key
encryption algorithm
@ Invented in 1977 by Rivest, Shamir and Adleman.
@ Used for encryption and signature.
@ Widely used in electronic commerce protocols (SSL).
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RSA

@ Key generation:

@ Generate two large distinct primes p and q of same bit-size.
@ Computen=p-qand¢=(p—1)(q-1).
@ Select arandom integer e, 1 < e < ¢ such that
ged(e,¢) =1
@ Compute the unique integer d such that
e-d=1 mod ¢

using the extended Euclidean algorithm.
@ The public key is (n,e). The private key is d.
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RSA encryption

@ Encryption
@ Given a message m € [0,n — 1] and the recipent’s
public-key (n, e), compute the ciphertext:

e

c=m® modn

@ Decryption
@ Given a ciphertext c, to recover m, compute:

d

m=c" modn
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Euler function

@ Definition:

@ ¢(n) for n > O is defined as the number of integers a
comprised between 0 and n — 1 such that gcd(a, n) = 1.
° (1) =1,94(2) =1, 6(3) = 2, p(4) = 2.
@ Equivalently:
o Let Z; be the set of integers a comprised between 0 and
n — 1 such that gcd(a,n) = 1.
@ Then ¢(n) = |Z|.
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@ If p > 2 is prime, then

p(p)=p-1

@ More generally, for any e > 1,

o(p®) =p*t-(p—1)

@ Forn,m > 0 such that gcd(n,m) = 1, we have:

¢(n-m) = ¢(n) - p(m)
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Euler’s theorem

@ Theorem

@ For any integer n > 1 and any integer a such that
gcd(a,n) = 1, we have a®?™ =1 mod n.

@ Proof

@ Consider the map f : Z} — Z}, such that f(b) = a - b for any
bezZ.
o f is a permutation, therefore :

[[o=]]@b)=a’m. (Hb)

bez bezy bez:

@ Therefore, we obtain a?(™ =1 mod n.
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Fermat’s little theorem

@ Theorem
@ For any prime p and any integer a # 0 mod p, we have
aP~t =1 mod p. Moreover, for any integer a, we have
aP =a mod p.
@ Proof
@ Follows from Euler's theorem and ¢(p) = p — 1.
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Proof that decryption works

@ Sincee-d =1 mod ¢, there is an integer k such that
e-d=1+k-¢.

@ If m # 0 mod p, then by Fermat’s little theorem mP~1 =1
mod p, which gives :

mitkP-1@-1) = m mod p

This equality is also true if m =0 mod p.

This gives m®® =m mod p for all m.

Similarly, m® =m mod q for all m.

By the Chinese Remainder Theorem, if p # q, then

e ¢ ¢ ¢

mé =m mod n

Jean-Sébastien Coron Cryptography



The RSA signature scheme

@ Key generation :
@ Public modulus: N = p - q where p and g are large primes.
@ Public exponent: e
@ Private exponent: d, suchthatd -e =1 mod ¢(N)
@ To signh a message m, the signer computes :
@ s=m? modN
@ Only the signer can sign the message.
@ To verify the signature, one checks that:
@ m=s® modN
@ Anybody can verify the signature
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Hash-and-sign paradigm

@ There are many attacks on basic RSA signatures:

o Existential forgery: r® =m mod N

@ Chosen-message attack: (my - m;)4 =m¢ -mJ mod N
@ To prevent from these attacks, one usually uses a hash

function. The message is first hashed, then padded.
@ m — H(m) — 1001...0101||H(m)
o Example: PKCS#1 v1.5:
pu(m) = 0001 FF....FFOO|lcgyal/SHA(M)
@ 1SO 9796-2: ;(m) = 6A|m[1]||H(m)||BC
@ The signature is then o = y(m)? mod N
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Attacks against RSA

@ Factoring
@ Equivalence between factoring and breaking RSA ?
@ Mathematical attacks
@ Attacks against plain RSA encryption and signature
@ Heuristic countermeasures
@ Low private / public exponent attacks
@ Provably secure constructions
@ Implementation attacks

@ Timing attacks, power attacks and fault attacks
@ Countermeasures
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Factoring attack

@ Factoring large integers

@ Best factoring algorithm: Number Field Sieve
@ Sub-exponential complexity

exp ((c + (1)) n*/*log*’*n)

for n-bit integer.
@ Current factoring record: 768-bit RSA modulus.

@ Use at least 1024-bit RSA moduli
@ 2048-bit for long-term security.
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Factoring vs breaking RSA

@ Breaking RSA:

@ Given (N,e) andy, find x such thaty = x* mod N
@ Open problem

@ Is breaking RSA equivalent to factoring ?
@ Knowing d is equivalent to factoring

@ Probabilistic algorithm (RSA, 1978)
@ Deterministic algorithm (A. May 2004, J.S. Coron and A.
May 2007)
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Elementary attacks

@ Plain RSA encryption: dictionary attack
@ If only two possible messages mg and my, then only
Co = (mp)® mod N and c; = (m3)® mod N.
@ = encryption must be probabilistic.
@ PKCS#1vl.5
@ p(m) = 0002||r||00||m
@ ¢ =p(m)® modN
o Sitill insufficient (Bleichenbacher’s attack, 1998)
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Attacks against Plain RSA signature

@ Existential forgery
@ r¢® =m mod N, sor is signature of m
@ Chosen message attack
o (mg-my)? =m¢.-md mod N
@ To prevent from these attacks, one first computes p(m),
and lets s = u(m)? mod N
@ |1SO 9796-1:

u(m) =5(mz)s(mz_1)m;m,_1 ...s(my)s(mo)mgy6
@ SO 9796-2:
p(m) = 6Am[1][[H(m)|[BC
o PKCS#1 v1.5:

u(m) = 0001 FF. .. .FFOO|/cgpyallSHA(M)
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Attacks against RSA signatures

@ Desmedt and Odlyzko attack (Crypto 85)

@ Based on finding messages m such that x(m) is smooth
(product of small primes only)
o p(m;) =[] p" for many messages m;.

I
@ Solve a linear system and write u(my) = ] x(m;)
i

@ Then pu(mg) = [T u(m)4 mod N
i

@ Application to ISO 9796-1 and ISO 9796-2 signatures

@ Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern,
1999)

@ Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi,
Weinmann, 2009)

o Extension of Desmedt and Odlyzko attack.

@ For ISO 9796-2 the attack is feasible if the output size of the
hash function is small enough.
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Low private exponent attacks

@ To reduce decryption time, one could use a small d
@ Wiener's attack: recover d if d < N°2°
@ Boneh and Durfee’s attack (1999)

@ Recoverd ifd < N029
@ Based on lattice reduction and Coppersmith’s technique
@ Open problem: extend to d < N°°

@ Conclusion: devastating attack
@ Use afull-sized
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Low public exponent attack

@ To reduce encryption time, one can use a small e
@ Forexamplee =3ore=2% 41
@ Coppersmith’s theorem :
@ Let N be an integer and f be a polynomial of degree 4.
Given N and f, one can recover in polynomial time all xq
such that f(xg) =0 mod N and xo < N/9,
@ Application: partially known message attack :
e Ifc = (B|/m)® mod N, one can recover m if |m| < |[N|/3
o Define f(x) = (B-2* +x)* —c mod N.
@ Thenf(m) =0 mod N and apply Coppersmith’s theorem
to recover m.
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Low public exponent attack

@ Coppersmith’s short pad attack

Letcy = (m|lr¢)® mod N and ¢, = (m||rz)®> mod N

One can recover m if ry,r, < N1/9

Letgi(x,y) =x3 —cq and go(x,y) = (X +y)° — co.

01 and g have a common root (m||ry, r, — ry) modulo N.
h(y) = Resx(91,92) has aroot A =r, —ry, with degh = 9.
To recover m||ry, take gcd of g1(x, A) and ga(x, A).

@ Conclusion:

@ Attack only works for particular encryption schemes.
@ Low public exponent is secure when provably secure
construction is used. One often takes e = 26 + 1.

¢ 6 ¢ ¢ ¢ ¢
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