How to implement RSA in practice

Jean-Sébastien Coron

Université du Luxembourg

September 28, 2009
How to implement RSA in practice

- The RSA algorithm
 - Key generation, encryption, decryption
- Mathematical attacks against RSA
 - Factoring, low private exponent attacks
 - Low public exponent attacks
 - Attacks against RSA signatures
- Implementation attacks (next course)
 - Timing attacks
 - Power attacks
 - Fault attacks
The RSA algorithm

- The RSA algorithm is the most widely-used public-key encryption algorithm
 - Invented in 1977 by Rivest, Shamir and Adleman.
 - Used for encryption and signature.
 - Widely used in electronic commerce protocols (SSL).
Key generation:

- Generate two large distinct primes p and q of same bit-size.
- Compute $n = p \cdot q$ and $\phi = (p - 1)(q - 1)$.
- Select a random integer e, $1 < e < \phi$ such that $\gcd(e, \phi) = 1$
- Compute the unique integer d such that

\[e \cdot d \equiv 1 \mod \phi \]

using the extended Euclidean algorithm.
- The public key is (n, e). The private key is d.
RSA encryption

- **Encryption**
 - Given a message \(m \in [0, n - 1] \) and the recipient’s public-key \((n, e)\), compute the ciphertext:
 \[
 c = m^e \mod n
 \]
 - Anybody can encrypt

- **Decryption**
 - Given a ciphertext \(c \), to recover \(m \), compute:
 \[
 m = c^d \mod n
 \]
 - Only the owner of the private-key can decrypt.
Why decryption works:

\[e \cdot d = 1 \mod (p - 1)(q - 1) \]

\[(m^e)^d = m^{e \cdot d} = m^1 = m \mod N \]
The RSA signature scheme

- **Key generation:**
 - Public modulus: $N = p \cdot q$ where p and q are large primes.
 - Public exponent: e
 - Private exponent: d, such that $d \cdot e \equiv 1 \mod \phi(N)$

- **To sign a message** m, the signer computes:
 - $s = m^d \mod N$
 - Only the signer can sign the message.

- **To verify the signature**, one checks that:
 - $m = s^e \mod N$
 - Anybody can verify the signature
Attacks against RSA

- Factoring
 - Equivalence between factoring and breaking RSA?
- Mathematical attacks
 - Attacks against plain RSA encryption and signature
 - Heuristic countermeasures
 - Low private / public exponent attacks
 - Provably secure constructions
- Implementation attacks
 - Timing attacks, power attacks and fault attacks
 - Countermeasures
Factoring large integers
- Best factoring algorithm: Number Field Sieve
- Sub-exponential complexity

$$\exp \left((c + \circ(1)) n^{1/3} \log^{2/3} n \right)$$

for n-bit integer.
- Current factoring record: 640-bit RSA modulus.
- Use at least 1024-bit RSA moduli
 - 2048-bit for long-term security.
Factoring vs breaking RSA

- **Breaking RSA:**
 - Given (N, e) and y, find x such that $y = x^e \mod N$

- **Open problem**
 - Is breaking RSA equivalent to factoring?

- **Knowing d is equivalent to factoring**
 - Probabilistic algorithm (RSA, 1978)
Plain RSA encryption: dictionary attack

- If only two possible messages \(m_0 \) and \(m_1 \), then only
 \[c_0 = (m_0)^e \mod N \] and \[c_1 = (m_1)^e \mod N. \]
- \(\Rightarrow \) encryption must be probabilistic.

PKCS#1 v1.5

- \(\mu(m) = 0002\|r\|00\|m \)
- \(c = \mu(m)^e \mod N \)
- Still insufficient (Bleichenbacher’s attack, 1998)
Attacks against Plain RSA signature

- **Existential forgery**
 \[r^e = m \mod N, \text{ so } r \text{ is signature of } m \]

- **Chosen message attack**
 \[(m_1 \cdot m_2)^d = m_1^d \cdot m_2^d \mod N\]

- To prevent from these attacks, one first computes \(\mu(m) \), and lets \(s = \mu(m)^d \mod N \)

 - ISO 9796-1:
 \[\mu(m) = \overline{s}(m_z)s(m_{z-1})m_zm_{z-1} \ldots s(m_1)s(m_0)m_06 \]

 - ISO 9796-2: \(\mu(m) = 6A\|m[1]\|H(m)\|BC \)

 - PKCS#1 v1.5:
 \[\mu(m) = 0001\ FF\ldots FF00\|c_{SHA}\|SHA(m) \]

- **Still insufficient**
 - Cryptanalysis of ISO 9796-1 and ISO 9796-2 (Coron, Naccache, Stern, 1999)
Attacks against RSA signatures

- Desmedt and Odlyzko attack (Crypto 85)
 - Based on finding messages m such that $\mu(m)$ is smooth (product of small primes only)
 - $\mu(m_i) = \prod_j p_j^{\alpha_{i,j}}$ for many messages m_i.
 - Solve a linear system and write $\mu(m_k) = \prod_i \mu(m_i)$
 - Then $\mu(m_k)^d = \prod_i \mu(m_i)^d \mod N$

- Coron, Naccache, Stern attack on ISO 9796-2
 - Extension of Desmedt and Odlyzko attack.
 - The attack is feasible if the output size of the hash function is small enough. Standard revised.
To reduce decryption time, one could use a small d
- Wiener’s attack: recover d if $d < N^{0.25}$
- Boneh and Durfee’s attack (1999)
 - Recover d if $d < N^{0.29}$
 - Based on lattice reduction and Coppersmith’s technique
 - Open problem: extend to $d < N^{0.5}$

Conclusion: devastating attack
- Use a full-size d
To reduce encryption time, one can use a small e
- For example $e = 3$ or $e = 2^{16} + 1$

Coppersmith’s theorem:
- Let N be an integer and f be a polynomial of degree δ. Given N and f, one can recover in polynomial time all x_0 such that $f(x_0) = 0 \mod N$ and $x_0 < N^{1/\delta}$.

Application: partially known message attack:
- If $c = (B || m)^3 \mod N$, one can recover m if $|m| < |N|/3$
- Define $f(x) = (B \cdot 2^k + x)^3 - c \mod N$.
- Then $f(m) = 0 \mod N$ and apply Coppersmith’s theorem to recover m.
Coppersmith’s short pad attack

Let \(c_1 = (m\|r_1)^3 \mod N \) and \(c_2 = (m\|r_2)^3 \mod N \)

One can recover \(m \) if \(r_1, r_2 < N^{1/9} \)

Let \(g_1(x, y) = x^3 - c_1 \) and \(g_2(x, y) = (x + y)^3 - c_2 \).

\(g_1 \) and \(g_2 \) have a common root \((m\|r_1, r_2 - r_1) \) modulo \(N \).

\(h(y) = \text{Res}_x(g_1, g_2) \) has a root \(\Delta = r_2 - r_1 \), with \(\text{deg} h = 9 \).

To recover \(m\|r_1 \), take \(\gcd \) of \(g_1(x, \Delta) \) and \(g_2(x, \Delta) \).

Conclusion:

- Attack only works for particular encryption schemes.
- Low public exponent is secure when provably secure construction is used. One often takes \(e = 2^{16} + 1 \).