
Cryptography in the real World - Homework

Jean-Sébastien Coron

Université du Luxembourg

1 Homework

Please answer the questions below. You must provide:

1. A PDF document providing the answer to the questions below. The PDF
document can include some relevant parts of your source code.

2. The source code.

2 Attack on variants of RSA

2.1 Secret modulus

Assume that Alice wants to keep her RSA modulus N secret to everybody except
to Bob. Alice uses e = 3 as public exponent. To encrypt a message m, Bob
computes c = m3 mod N and sends c to Alice. Assume that Eve gets c1 = m3

1

mod N and c2 = m3
2 mod N and already knows m1 and m2; explain how Eve

can recover N .

2.2 Common modulus

Assume that Alice and Bob want to share the same modulus N but use different
public exponent. Alice uses eA = 3 and Bob uses eB = 5. Let dA and dB be the
corresponding private exponents. Explain how Alice can recover dB from dA.

2.3 Common modulus, cont.

Assume that Alice and Bob want to share the same modulus N but use different
public exponent. Alice uses eA = 3 and Bob uses eB = 5. Now Charlie wants to
encrypt a message m for Alice and Bob. He sends:

cA = m3 mod N

to Alice and

cB = m5 mod N

to Bob. Explain how Eve can recover m from N , cA and cB .

2.4 Implementation

Download and install the NTL number theory library available at www.shoup.net.
Check that the previous attacks work by implementing them with NTL.

3 Coppersmith Attack

3.1 SAGE

Download and install the Sage library [1].

3.2 Basic Coppersmith Attack

The following code generates an RSA key with a modulus N of n bits, generates
a random polynomial:

f(x) = x2 + ax + b mod N

with a small root |x0| < 2n/3, and recovers this root using Coppersmith’s tech-
nique.

def keyGen(n=256):

"Generates an RSA key"

while True:

p=random_prime(2^(n//2));q=random_prime(2^(n//2));e=3

if gcd(e,(p-1)*(q-1))==1: break

d=inverse_mod(e,(p-1)*(q-1))

Nn=p*q

print "p=",p,"q=",q

print "N=",Nn

print "Size of N:",Nn.nbits()

return Nn,p,q,e,d

def CopPolyDeg2(a,b,Nn):

"Finds a small root of polynomial x^2+ax+b=0 mod N"

n=Nn.nbits()

X=2^(n//3-5)

M=matrix(ZZ,[[X^2,a*X,b],\

[0 ,Nn*X,0],\

[0 ,0 ,Nn]])

V=M.LLL()

v=V[0]

return [v[i]/X^(2-i) for i in range(3)]

def test():

"""Generates a random polynomial with a small root x0 modulo Nn

2

and recovers his root."""

Nn,p,q,e,d=keyGen()

n=Nn.nbits()

x0=ZZ.random_element(2^(n//3-10))

a=ZZ.random_element(Nn)

b=mod(-x0^2-a*x0,Nn)

print "x0=",x0

v=CopPolyDeg2(a,b,Nn)

R.<x> = ZZ[]

f = v[0]*x^2+v[1]*x+v[2]

print find_root(f, 0,2^(n//3-10))

3.3 Polynomials of degree 3

Modify the previous code to find small roots of polynomials of degree 3. What
is the new bound on x0 ?

3.4 Application to breaking RSA encryption

Let

N = 2122840968903324034467344329510307845524745715398875789936591447337206598081

be an RSA modulus of size 251-bits. Let m be a message with m < 236. Let

c = (2250 + m)3 mod N

We have:

c = 392293632962222587135360154606429713090217407578869377374897362323056543628

Recover the message m using Coppersmith’s technique.

3.5 Extension

Extend the previous attack to handle larger messages m, by using lattices of
higher dimension.

4 Fault attacks

1. Implement the plain RSA signature scheme using the NTL library available
at www.shoup.net, with a modulus size of 1024 bits, and using the Chinese
Remainder Theorem (CRT) : to compute s = md mod N , compute

sp = s mod p = H(m)d mod p−1 mod p

and
sq = s mod q = H(m)d mod q−1 mod q

Recover s mod N from sp and sq using the CRT.

3

2. Assume that an error occurs during the computation of sp, that is, an in-
correct value s′p 6= sp is computed while sq is correctly computed. Show how
to recover the factorization of N from s. How could such error be detected
? Propose and implement a simple method to detect such error.

5 DGHV Somowhat Homormorphic Encryption Scheme

Implement the basic DGHV encryption scheme [4], without the squashed decryp-
tion and without the bootstrapping, but using the compression of the public-key
as described in [3]. You can use the SAGE library [1].

5.1 Optional: DGHV with Squashed Decryption

Implement DGHV with squashed decryption, as described in [4, 2].

5.2 Optional: full DGHV

Implement the fully homomorphic DGHV encryption scheme, including the
bootstrapping procedure, as described in [4, 3].

References

1. Sage Mathematical Library, Available at http://www.sagemath.org/

2. Jean-Sebastien Coron, Avradip Mandal, David Naccache, Mehdi Tibouchi: Fully
Homomorphic Encryption over the Integers with Shorter Public Keys. CRYPTO
2011: 487-504.

3. Jean-Sebastien Coron, David Naccache, Mehdi Tibouchi: Public Key Compres-
sion and Modulus Switching for Fully Homomorphic Encryption over the Integers.
EUROCRYPT 2012: 446-464

4. Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan: Fully Homo-
morphic Encryption over the Integers. EUROCRYPT 2010: 24-43.

4

