Cryptography Course 2: attacks against RSA

Jean-Sébastien Coron

Université du Luxembourg

September 26, 2010

・ロン・雪と・雪と、 ヨン・

E 900

Attacks against RSA

Factoring

• Equivalence between factoring and breaking RSA ?

Mathematical attacks

- Attacks against plain RSA encryption and signature
- Heuristic countermeasures
- Low private / public exponent attacks
- Provably secure constructions
- Implementation attacks
 - Timing attacks, power attacks and fault attacks
 - Countermeasures

< ロ > < 同 > < 回 > < 回 > .

RSA

- Key generation:
 - Generate two large distinct primes *p* and *q* of same bit-size.
 - Compute $n = p \cdot q$ and $\phi = (p 1)(q 1)$.
 - Select a random integer e, 1 < e < φ such that gcd(e, φ) = 1
 - Compute the unique integer d such that

$$\mathbf{e} \cdot \mathbf{d} \equiv 1 \mod \phi$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

E 990

using the extended Euclidean algorithm.

• The public key is (*n*, *e*). The private key is *d*.

RSA encryption

Encryption

Given a message m ∈ [0, n − 1] and the recipent's public-key (n, e), compute the ciphertext:

$$c = m^e \mod n$$

- Decryption
 - Given a ciphertext *c*, to recover *m*, compute:

$$m = c^d \mod n$$

3

∃ ► -

< □ > < 同 > < 回 > <

- To reduce decryption time, one could use a small d
 - Wiener's attack: recover d if $d < N^{0.25}$
- Boneh and Durfee's attack (1999)
 - Recover *d* if $d < N^{0.29}$
 - Based on lattice reduction and Coppersmith's technique
 - Open problem: extend to $d < N^{0.5}$
- Conclusion: devastating attack
 - Use a full-size d

< □ > < 同 > < 回 > <

Low public exponent attack

• To reduce encryption time, one can use a small e

• For example e = 3 or $e = 2^{16} + 1$

- Coppersmith's theorem :
 - Let *N* be an integer and *f* be a polynomial of degree δ.
 Given *N* and *f*, one can recover in polynomial time all *x*₀ such that *f*(*x*₀) = 0 mod *N* and *x*₀ < *N*^{1/δ}.
- Application: partially known message attack :
 - If $c = (B||m)^3 \mod N$, one can recover *m* if |m| < |N|/3
 - Define $f(x) = (B \cdot 2^k + x)^3 c \mod N$.
 - Then $f(m) = 0 \mod N$ and apply Coppersmith's theorem to recover *m*.

ヘロト ヘ戸ト ヘヨト ヘヨト

Low public exponent attack

Coppersmith's short pad attack

- Let $c_1 = (m \| r_1)^3 \mod N$ and $c_2 = (m \| r_2)^3 \mod N$
- One can recover *m* if $r_1, r_2 < N^{1/9}$
- Let $g_1(x,y) = x^3 c_1$ and $g_2(x,y) = (x+y)^3 c_2$.
- g_1 and g_2 have a common root $(m||r_1, r_2 r_1)$ modulo N.
- $h(y) = \operatorname{Res}_{x}(g_{1}, g_{2})$ has a root $\Delta = r_{2} r_{1}$, with deg h = 9.

- To recover $m || r_1$, take gcd of $g_1(x, \Delta)$ and $g_2(x, \Delta)$.
- Conclusion:
 - Attack only works for particular encryption schemes.
 - Low public exponent is secure when provably secure construction is used. One often takes $e = 2^{16} + 1$.

Solving Modular polynomial equations

- Solving $p(x) = 0 \mod N$ when N is of unknown factorization: hard problem.
 - For $p(x) = x^2 a$, equivalent to factoring *N*.
 - For $p(x) = x^e a$, equivalent to inverting RSA.
- Coppersmith showed (E96) that finding small roots is easy.
 - When deg $p = \delta$, finds in polynomial time all integer x_0 such that $p(x_0) = 0 \mod N$ and $|x_0| \le N^{1/\delta}$.

(日)

- Based the LLL lattice reduction algorithm.
- Can be heuristically extended to more variables.

- Coppersmith's algorithm has numerous applications in cryptanalysis :
 - Cryptanalysis of plain RSA when some part of the message is known :
 - If $c = (B + x_0)^3 \mod N$, let $p(x) = (B + x)^3 c$ and recover x_0 if $x_0 < N^{1/3}$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- Factoring $n = p^r q$ for large *r* (Boneh and al., C99).
- Applications in provable security :
 - Improved security proof for RSA-OAEP with low-exponent (Shoup, C01).

- Find a small linear integer combination h(x) of the polynomials :
 - $q_{ik}(x) = x^i \cdot N^{\ell-k} p^k(x) \mod N^\ell$
 - For some ℓ and $0 \le i < \delta$ and $0 \le k \le \ell$.
 - $p(x_0) = 0 \mod N \Rightarrow p^k(x_0) = 0 \mod N^k \Rightarrow q_{ik}(x_0) = 0 \mod N^\ell$.
 - Then $h(x_0) = 0 \mod N^{\ell}$.
- If the coefficients of *h*(*x*) are small enough :
 - Then $h(x_0) = 0$ holds over \mathbb{Z} .
 - x_0 can be found using any standard root-finding algorithm.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Solving $x^2 + ax + b = 0 \mod N$.

Illustration with a polynomial of degree 2 :

- Let $p(x) = x^2 + ax + b \mod N$.
- We must find x_0 such that $p(x_0) = 0 \mod N$ and $|x_0| \le X$.
- We are interested in finding a small linear integer combination of the polynomials :
 - p(x), Nx and N.
 - Then $h(x_0) = 0 \mod N$.
- If the coefficients of h(x) are small enough :
 - Then $h(x_0) = 0$ also holds over \mathbb{Z} ,
 - which enables to recover x_0 .

ヘロト ヘ戸ト ヘヨト ヘヨト

Howgrave-Graham lemma

- Given $h(x) = \sum h_i x^i$, let $||h||^2 = \sum h_i^2$.
- Howgrave-Graham lemma :
 - Let $h \in \mathbb{Z}[x]$ be a sum of at most ω monomials. If $h(x_0) = 0$ mod N with $|x_0| \le X$ and $||h(xX)|| < N/\sqrt{\omega}$, then $h(x_0) = 0$ holds over \mathbb{Z} .
 - Proof :

$$|h(\mathbf{x}_0)| = \left|\sum h_i \mathbf{x}_0^i\right| = \left|\sum h_i X^i \left(\frac{\mathbf{x}_0}{\mathbf{X}}\right)^i\right|$$

$$\leq \sum \left|h_i X^i \left(\frac{\mathbf{x}_0}{\mathbf{X}}\right)^i\right| \leq \sum |h_i X^i|$$

$$\leq \sqrt{\omega} ||h(\mathbf{x}\mathbf{X})|| < N$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Since $h(x_0) = 0 \mod N$, this gives $h(x_0) = 0$.

Illustration of HG lemma

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへで

HG lemma

- The coefficients of h(xX) must be small:
 - *h*(*xX*) is a linear integer combination of the polynomials

$$p(xX) = X^2 \cdot x^2 + aX \cdot x + b$$

$$q_1(xX) = NX \cdot x$$

$$q_2(xX) = N$$

ヘロト ヘ戸ト ヘヨト ヘヨト

3

We must find a small integer linear combination of the vectors:

• [X², aX, b], [0, NX, 0] and [0, 0, N]

• Tool: LLL algorithm.

Lattice and lattice reduction

- We must find a small linear integer combination h(xX) of the polynomials p(xX), xXN and N.
 - Let *L* be the corresponding lattice, with a basis of row vectors : $\begin{bmatrix} X^2 & aX & b \end{bmatrix}$

$$\begin{bmatrix} X^2 & aX & b \\ NX & \\ & N \end{bmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

- Using LLL, one can find a lattice vector *b* of norm : $||b|| \le 2(\det L)^{1/3} \le 2N^{2/3}X$
- Then if $X < N^{1/3}/4$, then ||h(xX)|| = ||b|| < N/2
 - Howgrave-Graham lemma applies and $h(x_0) = 0$.

Lattice

- Definition :
 - Let $u_1, \ldots, u_\omega \in \mathbb{Z}^n$ be linearly independent vectors with $\omega \leq n$. The lattice *L* spanned by the u_i 's is

$$L = \big\{ \sum_{i=1}^{\infty} n_i \cdot u_i | n_i \in \mathbb{Z} \big\}$$

- If L is full rank (ω = n), then det L = | det M|, where M is the matrix whose rows are the basis vectors u₁,..., u_ω.
- The LLL algorithm :
 - The LLL algorithm, given (u₁,..., u_ω), finds in polynomial time a vector b₁ such that:

$$\|b_1\| \le 2^{(\omega-1)/4} \det(L)^{1/\omega}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

э.

- The previous bound gives $|x_0| \le N^{1/3}/4$.
 - But Coppersmith's bound gives $|x_0| \le N^{1/2}$.
- Technique : work modulo N^k instead of N.
 - Let $q(x) = (p(x))^2$. Then $q(x_0) = 0 \mod N^2$.
 - $q(x) = x^4 + a'x^3 + b'x^2 + c'x + d'$.
 - Find a small linear combination h(x) of the polynomials q(x), Nxp(x), Np(x), N²x and N².
 - Then $h(x_0) = 0 \mod N^2$.
 - If the coefficients of h(x) are small enough, then $h(x_0) = 0$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Details when working modulo N^2

Lattice basis :

$$\begin{bmatrix} X^4 & a'X^3 & b'X^2 & c'X & d' \\ NX^3 & NaX^2 & NbX \\ NX^2 & NaX & Nb \\ N^2X & \\ & & N^2 \end{bmatrix}$$

• Using LLL, one gets :

•
$$||h(xX)|| \le 2 \cdot (\det L)^{1/5} \le 2X^2 N^{6/5}$$

• If $X \le N^{2/5}/6$, then $||h(xX)|| \le N^2/3$ and $h(x_0) = 0$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ