Introduction to Cryptography

Jean-Sébastien Coron

September 2014

Information Security Basics

- 4 parts
- Public-key cryptography:
 Jean-Sébastien Coron
- Symmetric-key cryptography:
 Alex Biryukov
- Security protocols:
 Siouke Many and Hu
 - Sjouke Mauw and Hugo Jonker
- Advanced security protocols:
 Peter Ryan

Outline

- Early symmetric-key encryption schemes
- Public-key cryptography
 - Public-key encryption
 - The RSA cryptosystem
 - Digital signatures
 - Diffie-Hellman Key-exchange

Traditional goal: encryption

Symmetric cryptography

One-time pad (1917)

- Plaintext is xored with the key to produce the ciphertext
 - 011001011001
 - 111010010010

100011001011

- Proved unbreakable by Shannon (1949) if key is random and as long as the plaintext.
- Issue: key as long as the plaintext.
- Used for the hotline between Washington and Moscow during the cold war.

DES (1976)

- Data Encryption Standard (DES), published as FIPS PUB 46.
- Developed by NBS (National Bureau of Standards), now NIST (National Institute of Standards and Technology), following an algorithm from IBM.
- De facto world-wide standard since 1976.
- Superseded by the AES, but remains in widespread use.

DES block-cipher

- Input length: 64 bits.
- Output length: 64 bits.
- Key length: 56 bits.

DES

- Feistel Cipher
- F function:

Security of DES

- Problem: key is too short (56 bits).
 Exhaustive search has become feasible
 - DES cracker from Electronic
 Frontier Foundation (EFF).
 Breaks DES in 2 days (1998).
- Other attacks

- Differential cryptanalysis (Biham and Shamir). 2⁴⁷ chosen plaintexts
- Linear cryptanalysis (Matsui, 1993). 2⁴³
 known plaintexts.
- New standard: AES

Public-key cryptography

- Invented by Diffie and Hellman in 1976. Revolutionized the field.
- Each user now has two keys
 - A public key
 - A private key
- Should be hard to compute the private key from the public key.
- Enables:
 - Asymmetric encryption
 - Digital signatures
 - Key exchange
 - Identification, and many other protocols.

Key distribution issue

- Symmetric cryptography
 - How to initially distribute the key to establish a secure channel ?

Asymmetric encryption

Solves the key distribution issue

Analogy: the mailbox

- Bob wants to send a letter to Alice
 - Bob obtains Alice's adress
 - Bob puts his letter in Alice's mailbox
 - Alice opens her mailbox and read Bob's letter.
- Properties of the mailbox
 - Anybody can put a letter in the mailbox
 - Only Alice can open her mailbox

RSA (1977)

- Invented by Rivest, Shamir and Adleman
- First realization of asymmetric encryption.
- Implements a trapdoor one-way permutation.
- Still the most widely PK algorithm in use.

Trapdoor one-way permutation

Trapdoor unknown:

Trapdoor known:

- Asymmetric encryption:
 - Everybody can encrypt to Alice using
 Only Alice can decrypt using

RSA

Public key: n=p.q and e

- Primes p and q remain secret.

- Private key: d such that e.d=1 mod (p-1)(q-1)
- Encryption using public n,e: c=m^e mod n
- Decryption using private d: m=c^d mod n
- PKCS#1 v2.1

RSA

Public key: n=p.q and e

- Primes p and q remain secret.

- Private key: d such that e.d=1 mod (p-1)(q-1)
- Encryption using public n,e: c=m^e mod n
- Decryption using private d: m=c^d mod n
- PKCS#1 v2.1

RSA

- Decryption works because m=c^d=(m^e)^d=m^{e.d}=m because e.d=1 mod f
- Security is based on the hardness of factorization
 - Given n=p.q, no known efficient algorithm to recover p and q.
 - Factorization record: 768 bits (2010)
- Public modulus n must be large enough
 At least 1024 bits. 2048 bits is better.

Implementation of RSA

- Required: computing with large integers
 more than 1024 bits.
- In software
 - big integer library: GMP, NTL
- In hardware
 - Cryptoprocessor for smart-card
 - Hardware accelerator for PC.

Speed of RSA

- RSA much slower than AES and other secret key algorithms.
 - to encrypt long messages, encrypt a symmetric key K with RSA, and encrypt the long message with K.

Security of RSA

- Security of RSA is based on the hardness of factorization
 - Given n=p.q, no known efficient algorithm to recover p and q.
 - Factorization record: 663 bits (2005)
- Public modulus n must be large enough
 At least 1024 bits, 2048 bits is better.
- Factoring is just one line of attack
 - not necessarily the most practical
 - more attacks to take into account...

Attacks against RSA

- Dictionary attack
 - If only two possible messages m_0 and m_1 , then only two ciphertexts $c_0=m_0^e$ [n] and $c_1=m_1^e$ [n].
 - Encryption must be probabilistic (or nonstatic).
- Coppersmith's attack (1996)
 - Applies for RSA with small e, when some part of the message is known

Attacks against RSA

- Chosen-ciphertext attack:
 Given ciphertext c to be decrypted
 - Generate a random r
 - Ask for the decryption of the random looking ciphertext c'=c*(r^e)[n]
 - One gets m'=c'd=cd*(r^e)d=cd*r=m*r[n]
 - This enables to compute m=m'/r [n]

Attacks against RSA

- One cannot use plain RSA encryption
 - one must add some randomness
 - one must apply some preformatting to the message
- Example: PKCS#1 v1.5
 - Encryption: m(m)=0002 | r | 00 | m, then $c=m(m)^d [n]$
 - Decryption: recover m(m), check redundancy.
- Bleichenbacher's attack against PKCS#1 v1.5
 - Appeared in 1998. Could be use against web-servers using SSL protocol.

Security of RSA (and other cryptosystems)

- To be rigorous when speaking about security, one must specify
 - the attacker's goal:
 does he need to recover the key or only
 decrypt a particular ciphertext or less ?
 - the attacker's power: does he get only the user's public-key, or more ?

Digital signature

- A bit string that depends on the message m and the user's public-key
 - Only Alice can sign a message using her private-key

🖵 Alice's public-key

Anybody can verify Alice's signature of m
 given her public-key
 m
 v
 v
 v

BOB

Digital signature

- A digital signature provides:
 - Authenticity: only Alice can produce a signature of a message valid under her public-key.
 - Integrity: the signed message cannot be modified.
 - Non-repudiation: Alice cannot later claim that she did not sign the message

Signing with RSA

- Public key: n=p.q and e
- Private key: d such that
 e.d=1 mod (p-1)(q-1)
- Signing using private d: s=m^d mod n
- Verifying using public n,e: check that m=s^e mod n
- ISO 9796-2, PKCS#1 v2.1

Attacks against RSA signatures

- Given $s_1 = m_1^d \mod n$ and $s_2 = m_2^d \mod n$
 - one can compute the signature of $m_1 * m_2$ without knowing d

 $s = s_1^* s_2^* = (m_1^d)^* (m_2^d) \mod n = (m_1^* m_2)^d \mod n$

- One cannot use plain RSA signature
 - One must apply some pre-formatting to the message to cancel the mathematical structure.

Other signature schemes

- Digital Signature Algorithm (DSA) (1993)
 - Digital Signature Standard (DSS) proposed by NIST, specified in FIPS 186.
 - Security based on the hardness of discrete log.
 - ECDSA: a variant of DSA for elliptic-curves
- Rabin signature scheme
 - Similar to RSA but with e=2
- El-Gamal signature scheme (1984)
 - Based on the discrete-log problem

Diffie-Hellman key exchange (1976)

Public parameters: g and p

Security of Diffie-Hellman

- Based on the hardness of the discretelog problem:
 - Given $A=g^a \mod p$, find a
 - No efficient algorithm for large p.
- No authentication
 - Vulnerable to the man in the middle attack
- Authenticated key exchange
 - Using a PKI. Alice and Bob can sign A and B
 - Password-authenticated key-exchange IEEE P1363.2

Lessons from the past

- Cryptography is a permanent race between construction and attacks
 - but somehow this has changed with modern cryptography and security proofs.
- Security should rely on the secrecy of the key and not of the algorithm
 - Open algorithms enables open scrutiny.

Modern cryptography

- New functionalities
 - Identity-based encryption, voting, electronic money, auction...
- Formalization of security notions
 - What is a secure encryption scheme? a secure signature scheme?
- Construction of schemes or protocols that provably achieve these security notions
 - Based on some hardness assumption (e.g., factoring is hard).
- Modern cryptography is about security proofs.
 - A scheme without security proof is useless.