Introduction to Cryptography

Jean-Sébastien Coron

January 2007

Outline

- History
 - From the Greeks to Shannon
- Modern Cryptography
 - Goals: confidentiality, integrity, authenticity
 - Schemes: secret-key encryption, public-key encryption, digital signature...
 - Tools: block-ciphers, discrete-log hard groups, trapdoor permutations...

Early history

- Hiding the content of a message
 - Scytale: 500 B.C., used by the Spartan military.

Caesar's cipher (50 B.C.)

- Used by Caesar to communicate with his generals
- Each letter is shifted by a constant position in the alphabet.

- With n=3: VENI VIDI VICIT => YHQL YLGL YLFL
- Only 25 possibilities for n => WEAK

ROT13

• Caesar cipher with n=13

- Sometimes used in online forums
- WEAK

Mono-alphabetic Cipher

 Each letter is replaced with another letter, according to a fixed substitution

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: C G H U Z J T E L Y X I F O P K J W V A B D M S N Q

Then HELLO WORLD enciphers to EZIIP MPWIU

Number of possible keys is large: 26!=2^88.4 or 88 bits, but...

Frequency analysis

• Frequency of letters in English:

- Cryptanalysis of mono-alphabetic cipher:
 - The most frequent letter in the ciphertext is likely E,T or A.
 - Substitute and continue with less frequent letters.
 WEAK

The Vigenere Cipher (1586)

- Consists of several Caesar ciphers in sequence with different shift values
- Encrypt using a repeated keyword

CRYPTOCRYPTOCR ATTACKTOMORROW

CWRPVYVFKDKFQN

	А	В	С	D	Е	F	G	Н	I	J	K	L	Μ	Ν	0	Р	Q	R	\mathbf{S}	т	U	v	w	х	Y	Z
\mathbf{A}	A	В	С	D	Е	F	G	Η	Ι	J	Κ	L	Μ	Ν	0	Ρ	Q	R	s	Т	U	ν	W	х	Υ	Z
в	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	М	Ν	0	Ρ	Q	R	\mathbf{s}	т	U	ν	W	х	Y	Z	A
C	C	D	Е	F	G	Н	Ι	J	к	L	М	Ν	0	\mathbf{P}	Q	R	\mathbf{s}	т	U	ν	W	х	Y	Z	А	В
D	D	Е	F	G	Н	Ι	J	к	L	М	Ν	0	Ρ	Q	R	\mathbf{S}	т	U	ν	W	х	Y	z	А	в	С
Е	E	F	G	Н	I	J	к	L	М	Ν	0	Ρ	Q	R	\mathbf{s}	т	υ	ν	w	х	Y	z	А	в	С	D
F	F	G	Η	Ι	J	к	L	М	Ν	0	Ρ	Q	R	\mathbf{s}	т	U	ν	W	х	Y	z	А	в	С	D	Е
G	G	Η	Ι	J	Κ	L	М	Ν	0	Ρ	Q	R	\mathbf{S}	т	U	ν	W	х	Y	z	А	в	С	D	Е	F
\mathbf{H}	Η	Ι	l	к	L	М	Ν	0	Ρ	Q	R.	\mathbf{s}	т	U	ν	W	х	Y	Ζ	А	в	С	D	Е	F	G
I	I	J	K	L	М	Ν	0	Ρ	Q	R	\mathbf{s}	т	υ	ν	W	х	Y	z	А	в	С	D	Ε	F	G	Η
J	J	к	L	Μ	Ν	0	Ρ	Q	R	\mathbf{s}	т	U	ν	W	х	Y	z	А	в	С	D	Ε	F	G	Η	Ι
\mathbf{K}	\mathbf{K}	L	М	Ν	0	Ρ	Q	R	\mathbf{S}	Т	U	v	W	х	Y	Z	А	В	С	D	Е	F	G	Η	I	J
\mathbf{L}	L	М	Ν	0	Ρ	Q	R.	\mathbf{s}	т	U	ν	W	х	Y	Z	А	В	С	D	Ε	F	G	Η	Ι	J	K
\mathbf{M}	Μ	Ν	0	Ρ	Q	R	\mathbf{s}	т	U	ν	W	х	Υ	Z	А	В	С	D	Ε	F	G	Η	Ι	J	Κ	L
\mathbf{N}	N	0	Ρ	Q	R	\mathbf{s}	т	U	ν	W	х	Y	z	А	в	С	D	Е	F	G	Η	Ι	l	Κ	L	М
0	0	Ρ	Q	R	\mathbf{s}	Т	U	ν	W	х	Y	Z	А	В	С	D	Е	F	G	Η	Ι	J	Κ	L	М	Ν
\mathbf{P}	P	Q	R	\mathbf{s}	Т	U	ν	W	х	Y	Ζ	А	В	С	D	Ε	F	G	Η	Ι	l	Κ	L	Μ	Ν	0
\mathbf{Q}	Q	R	\mathbf{S}	т	U	ν	W	х	Y	Ζ	А	в	С	D	Ε	F	G	Н	Ι	J	\mathbf{K}	L	М	Ν	0	Ρ
\mathbf{R}	R	\mathbf{s}	Т	U	ν	w	х	Y	z	А	в	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Ρ	Q
s	s	т	U	ν	w	х	Y	z	А	В	С	D	Ε	F	G	Η	I	J	к	L	м	Ν	0	Ρ	Q	R
\mathbf{T}	Т	U	ν	W	х	Y	Ζ	А	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	Μ	Ν	0	Ρ	Q	R	s
U	U	v	W	х	\mathbf{Y}	z	А	в	С	D	Ε	F	G	Η	Ι	J	Κ	L	М	Ν	0	\mathbf{P}	Q	R	\mathbf{s}	Т
\mathbf{v}	v.	W	х	Y	z	А	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	М	Ν	0	Ρ	Q	R	\mathbf{S}	т	U
w	W	х	Y	z	А	в	С	D	Ε	F	G	Η	Ι	J	K	L	м	Ν	0	Ρ	Q	R	\mathbf{S}	т	υ	V
\mathbf{x}	x	Y	Z	А	в	С	D	Е	F	G	Н	Ι	J	\mathbf{K}	L	М	Ν	0	\mathbf{P}	Q	R	\mathbf{s}	Т	U	ν	W
Y	Y	Z	A	В	С	D	Е	F	G	Η	Ι	J	Κ	L	М	Ν	0	Ρ	Q	R	\mathbf{S}	Т	U	ν	W	х
\mathbf{Z}	Z	A	В	С	D	Ε	F	G	Η	I	J	Κ	L	М	Ν	0	Ρ	Q	R	\mathbf{S}	Т	U	v	W	х	Y

Security of Vigenere

- Simple frequency analysis is defeated
- Critical weakness:
 - once the keyword's length is known, can be separated in a sequence of Caesar cipher, which can be individually broken.
 - Kasiski's attack (1863): consists in looking for repeated sequences in the ciphertext.
 SECRETESECRETESECRETESECRET
 CRYPTOLOGUESOUCRYPTOGRAPHES
 UVAGXHPGKWVWHYUVAGXHKJERYTL
 - Enables to discover the keyword length
- WEAK

Jefferson's disk (1795)

- Used by the US army between 1923 and 1942.
- A set of 20 to 30 numbered wheels, each with the letters of the alphabet arranged randomly around them.

- Plaintext is made on one row and ciphertext is read on another row.
- Sender and recipient have to agree on the ordering of the wheels.

Security of Jefferson's disk

- Weakness: the offset between plaintext letter and ciphertext letter is the same for all disks.
- Assume that the attacker has a set of Jefferson's disk but doesn't know the ordering.
 - Assume that he knows some part of the plaintext (e.g., a plaintext always start with « hello »).

- Then he can determine the possible offsets for each disk and each letter, and determine the common offset.
- WEAK

Enigma

- A cipher machine with rotors.
- Developed in the 20s and used by the German army during WW2.
- Encryption:

- <complex-block>
- Set the initial rotor position and plug board
- Types plaintext
- Corresponding letter lights up and rotors moves one step.

Enigma

 Current flows from the battery (1) through the pressed switch A (2), the plugboard (3), the rotors (4)(5), the reflector (6), the rotors (5)(4), the plugboard (7)(8) to lightup the D lamp (9).

- The rotors move with every key press, which changes the electrical path.
- Implements polyalphabetic substitution with a long period.

Security of Enigma

- Very secure for that time
- Polish Cipher Bureau: algebraic cryptanalysis from Marian Rejewski.
- Bletchley Park: during WWII, Alan Turing and Gordon Welchman developed the « bombe » to search for the correct rotor positions.

One-time pad (1917)

Plaintext is xored with the key to produce the ciphertext
 011001011001
 111010010010

100011001011

- Proved unbreakable by Shannon (1949) if key is random and as long as the plaintext.
- Issue: key as long as the plaintext.
- Used for the hotline between Washington and Moscow during the cold war.

DES (1976)

- Data Encryption Standard (DES), published as FIPS PUB 46.
- Developed by NBS (National Bureau of Standards), now NIST (National Institute of Standards and Technology), following an algorithm from IBM.
- De facto world-wide standard since 1976.
- Superseded by the AES, but remains in widespread use.

DES block-cipher

- Input length: 64 bits.
- Output length: 64 bits.
- Key length: 56 bits.

DES

- Feistel Cipher
- F function:

DES modes of operation

- Encrypting longer messages (>64 bits)
- FIPS-81: DES modes of operation

Electronic Codebook (ECB) mode encryption

Cipher Block Chaining (CBC) mode encryption

· CBC: OK

Security of DES

- Problem: key is too short (56 bits).
 Exhaustive search has become feasible
 - DES cracker from Electronic
 Frontier Foundation (EFF).
 Breaks DES in 2 days (1998).
- Other attacks

- Differential cryptanalysis (Biham and Shamir). 2⁴⁷ chosen plaintexts
- Linear cryptanalysis (Matsui, 1993). 2⁴³
 known plaintexts.

TRIPLE DES

- Block cipher
 - 64-bit input and output, 168-bit key

 Slowly disappearing, replaced by AES (6 times faster in software).

Public-key cryptography

- Invented by Diffie and Hellman in 1976. Revolutionized the field.
- Each user now has two keys
 - A public key
 - A private key
- Should be hard to compute the private key from the public key.
- Enables:
 - Asymmetric encryption
 - Digital signatures
 - Key exchange
 - Identification, and many other protocols.

Key distribution issue

- Symmetric cryptography
 - How to initially distribute the key to establish a secure channel ?

Asymmetric encryption

Solves the key distribution issue

Analogy: the mailbox

- Bob wants to send a letter to Alice
 - Bob obtains Alice's adress
 - Bob puts his letter in Alice's mailbox
 - Alice opens her mailbox and read Bob's letter.
- Properties of the mailbox
 - Anybody can put a letter in the mailbox
 - Only Alice can open her mailbox

RSA (1977)

- Invented by Rivest, Shamir and Adleman
- First realization of asymmetric encryption.
- Implements a trapdoor one-way permutation.
- Still the most widely PK algorithm in use.

Trapdoor one-way permutation

Trapdoor unknown:

Trapdoor known:

- Asymmetric encryption:
 - Everybody can encrypt to Alice using 💁 🖬
 - Only Alice can decrypt using O-----

RSA

Public key: n=p.q and e

- Primes p and q remain secret.

- Private key: d such that e.d=1 mod (p-1)(q-1)
- Encryption using public n,e: c=m^e mod n
- Decryption using private d: m=c^d mod n
- PKCS#1 v2.1

RSA

- Decryption works because m=c^d=(m^e)^d=m^{e.d}=m because e.d=1 mod f
- Security is based on the hardness of factorization
 - Given n=p.q, no known efficient algorithm to recover p and q.
 - Factorization record: 663 bits (2005)
- Public modulus n must be large enough
 - At least 1024 bits. 2048 bits is better.

Digital signature

- A bit string that depends on the message m and the user's public-key
 - Only Alice can sign a message using her private-key

yes/no

🖵 Alice's public-key

- Anybody can verify Alice's signature of m given her public-key

BOB

Digital signature

- A digital signature provides:
 - Authenticity: only Alice can produce a signature of a message valid under her public-key.
 - Integrity: the signed message cannot be modified.
 - Non-repudiation: Alice cannot later claim that she did not sign the message

Signing with RSA

- Public key: n=p.q and e
- Private key: d such that
 e.d=1 mod (p-1)(q-1)
- Signing using private d: s=m^d mod n
- Verifying using public n,e: check that m=s^e mod n
- ISO 9796-2, PKCS#1 v2.1

Other signature schemes

- Digital Signature Algorithm (DSA) (1993)
 - Digital Signature Standard (DSS) proposed by NIST, specified in FIPS 186.
 - Security based on the hardness of discrete log.
 - ECDSA: a variant of DSA for elliptic-curves
- Rabin signature scheme
 - Similar to RSA but with e=2
- El-Gamal signature scheme (1984)
 - Based on the discrete-log problem

Diffie-Hellman key exchange (1976)

Public parameters: g and p

Security of Diffie-Hellman

- Based on the hardness of the discretelog problem:
 - Given $A=g^a \mod p$, find a
 - No efficient algorithm for large p.
- No authentication
 - Vulnerable to the man in the middle attack
- Authenticated key exchange
 - Using a PKI. Alice and Bob can sign A and B
 - Password-authenticated key-exchange IEEE P1363.2

Lessons from the past

- Cryptography is a permanent race between construction and attacks
 - but somehow this has changed with modern cryptography and security proofs.
- Security should rely on the secrecy of the key and not of the algorithm
 - Open algorithms enables open scrutiny.

Modern cryptography

- New functionalities
 - Identity-based encryption, voting, electronic money, auction...
- Formalization of security notions
 - What is a secure encryption scheme? a secure signature scheme?
- Construction of schemes or protocols that provably achieve these security notions
 - Based on some hardness assumption (e.g., factoring is hard).
- Modern cryptography is about security proofs.
 - A scheme without security proof is useless.