Public-key cryptography Part 3: secure cloud computing

Jean-Sébastien Coron

University of Luxembourg

Outline

- Lecture 1: introduction to public-key cryptography
 - RSA encryption, signatures and DH key exchange
- Lecture 2: applications of public-key cryptography
 - Security models.
 - How to encrypt and sign securely with RSA. OAEP and PSS.
 - Public-key infrastructure. Certificates, SSL protocol.
- Lecture 3: cloud computing (this lecture)
 - How to delegate computation thanks to fully homorphic encryption
 - A fully homomorphic encryption scheme

Introduction to Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

Overview

- What is Fully Homomorphic Encryption (FHE) ?
 - Basic properties
 - Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
 - 1st gen: [Gen09], [DGHV10]: bootstrapping, slow
 - 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching).
 - 3rd gen: [GSW13]: no modulus switching, slow noise growth
 - 4th gen: [CKKS17]: approximate computation

(4 同) トイヨ トイヨ う

Overview

- What is Fully Homomorphic Encryption (FHE) ?
 - Basic properties
 - Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
 - 1st gen: [Gen09], [DGHV10]: bootstrapping, slow
 - 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching).
 - 3rd gen: [GSW13]: no modulus switching, slow noise growth
 - 4th gen: [CKKS17]: approximate computation

Overview

- What is Fully Homomorphic Encryption (FHE) ?
 - Basic properties
 - Cloud computing on encrypted data: the server should process the data without learning the data.

- 4 generations of FHE:
 - 1st gen: [Gen09], [DGHV10]: bootstrapping, slow
 - 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear construction (modulus switching).
 - 3rd gen: [GSW13]: no modulus switching, slow noise growth
 - 4th gen: [CKKS17]: approximate computation

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

• For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

 $c_2 = m_2^e \mod N$
 $\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

• For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N \implies c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

• Multiplicative property of RSA.

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N \implies c = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

- Homomorphic encryption: given c_1 and c_2 , we can compute the ciphertext c for $m_1 \cdot m_2 \mod N$
 - using only the public-key
 - without knowing the plaintexts m_1 and m_2 .

• RSA homomorphism: decryption function $\delta(x) = x^d \mod N$ $\delta(c_1 \times c_2) = \delta(c_1) \times \delta(c_2) \pmod{N}$ Ciphertexts $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \xrightarrow{\times} \mathbb{Z}/N\mathbb{Z}$ $\downarrow^{\delta,\delta} \qquad \qquad \downarrow^{\delta}$ Plaintexts $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \xrightarrow{\times} \mathbb{Z}/N\mathbb{Z}$

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem [P99]

★ ∃ > < ∃ >

э

Application of Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

 $c_1 = g^{m_1} \mod N^2$ $c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$

- Application: e-voting.
 - Voter *i* encrypts his vote $m_i \in \{0, 1\}$ into:

$$c_i = g^{m_i} \cdot z_i^N \mod N^2$$

• Votes can be aggregated using only the public-key:

$$c = \prod_i c_i = g^{\sum_i m_i} \cdot z \bmod N^2$$

• *c* is eventually decrypted to recover $m = \sum_{i} m_{i}$

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N \implies c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

• Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - 0 $\xrightarrow{E_{pk}}$ 203ef6124...23ab87₁₆, 1 $\xrightarrow{E_{pk}}$ b327653c1...db3265₁₆
 - Encryption must be probabilistic.
- Fully homomorphic property
 - Given $E_{pk}(x)$ and $E_{pk}(y)$, one can compute $E_{pk}(x \oplus y)$ and $E_{pk}(x \cdot y)$ without knowing the private-key.

< 同 > < 三 > < 三 >

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - 0 $\xrightarrow{E_{pk}}$ 203ef6124...23ab87₁₆, 1 $\xrightarrow{E_{pk}}$ b327653c1...db3265₁₆
 - Encryption must be probabilistic.
- Fully homomorphic property
 - Given $E_{pk}(x)$ and $E_{pk}(y)$, one can compute $E_{pk}(x \oplus y)$ and $E_{pk}(x \cdot y)$ without knowing the private-key.

Evaluation of any function

- Universality
 - We can evaluate homomorphically any boolean computable function $f:\{0,1\}^n \to \{0,1\}$

- Alice wants to outsource the computation of f(x)
 - but she wants to keep x private
- She encrypts the bits x_i of x into $c_i = E_{pk}(x_i)$ for her pk
 - and she sends the c_i's to the server

Outsourcing computation (1)

$$c_i = E_{pk}(x_i)$$

- Alice wants to outsource the computation of f(x)
 - but she wants to keep x private
- She encrypts the bits x_i of x into $c_i = E_{pk}(x_i)$ for her pk
 - and she sends the c_i's to the server

Outsourcing computation (2)

$$c_i = E_{pk}(x_i)$$

• The server homomorphically evaluates f(x)

- by writing $f(x) = f(x_1, \ldots, x_n)$ as a boolean circuit.
- Given $E_{pk}(x_i)$, the server eventually obtains $c = E_{pk}(f(x))$
- Finally Alice decrypts c into y = f(x)
 - The server does not learn x.
 - Only Alice can decrypt to recover f(x).
 - Alice could also keep f private.

Outsourcing computation (2)

伺 ト イ ヨ ト イ ヨ

• The server homomorphically evaluates f(x)

- by writing $f(x) = f(x_1, \ldots, x_n)$ as a boolean circuit.
- Given $E_{pk}(x_i)$, the server eventually obtains $c = E_{pk}(f(x))$
- Finally Alice decrypts c into y = f(x)
 - The server does not learn x.
 - Only Alice can decrypt to recover f(x).
 - Alice could also keep f private.

Outsourcing computation (2)

$$c_i = E_{pk}(x_i)$$

$$c = E_{pk}(f(x))$$

$$y=D_{sk}(c)=f(x)$$

- The server homomorphically evaluates f(x)
 - by writing $f(x) = f(x_1, \ldots, x_n)$ as a boolean circuit.
 - Given $E_{pk}(x_i)$, the server eventually obtains $c = E_{pk}(f(x))$
- Finally Alice decrypts c into y = f(x)
 - The server does not learn x.
 - Only Alice can decrypt to recover f(x).
 - Alice could also keep f private.

Fully Homomorphic Encryption: first generation

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

・ 同 ト ・ ヨ ト ・ ヨ ト

Fully Homomorphic Encryption: first generation

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

伺い イヨト イヨト

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

Decryption:

 $(c \mod p) \mod 2 = m$

Parameters:

∃ ► < ∃ ►</p>

Homomorphic Properties of DGHV

• Addition:

 $c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$

• $c_1 + c_2$ is an encryption of $m_1 + m_2 \mod 2 = m_1 \oplus m_2$

• Multiplication:

 $c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

- $c_1 \cdot c_2$ is an encryption of $m_1 \cdot m_2$
- Noise becomes twice larger.

・ 同 ト ・ ヨ ト ・ ヨ ト

Homomorphic Properties of DGHV

• Addition:

 $c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$

• $c_1 + c_2$ is an encryption of $m_1 + m_2 \mod 2 = m_1 \oplus m_2$

Multiplication:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

- $c_1 \cdot c_2$ is an encryption of $m_1 \cdot m_2$
- Noise becomes twice larger.

化原因 化原因

Homomorphism of DGHV

• DGHV ciphertext:

$$c = q \cdot p + 2r + m$$

• Homomorphism: $\delta(x) = (x \mod p) \mod 2$

• only works if noise r is smaller than p

Somewhat homomorphic scheme

- The number of multiplications is limited.
 - Noise grows with the number of multiplications.
 - Noise must remain < p for correct decryption.

Public-key Encryption with DGHV

• For now, encryption requires the knowledge of the secret p:

 $c = q \cdot p + 2r + m$

- We can actually turn it into a public-key encryption scheme
 Using the additively homomorphic property
- Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

Public-key Encryption with DGHV

• For now, encryption requires the knowledge of the secret *p*:

 $c = q \cdot p + 2r + m$

- We can actually turn it into a public-key encryption scheme
 Using the additively homomorphic property
- Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

• DGHV multiplication over $\ensuremath{\mathbb{Z}}$

 $c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q' \cdot p + 2r' + m_1 \cdot m_2$

- Problem: ciphertext size has doubled.
- Constant ciphertext size
 - We publish an encryption of 0 without noise $x_0 = q_0 \cdot p$
 - We reduce the product modulo x_0

$$c_3 = c_1 \cdot c_2 \mod x_0$$

= q'' \cdot p + 2r' + m_1 \cdot m_2

• Ciphertext size remains constant

トイラトイラト

Public-key size

- Public-key size:
 - $\tau \cdot \gamma = 2 \cdot 10^{11}$ bits = 25 GB !

伺 と く ヨ と く ヨ と

• Ciphertext: $c = q \cdot p + 2r + m$

$$\gamma \simeq 2 \cdot 10^7 \text{ bits}$$

$$p: \eta \simeq 2700 \text{ bits}$$

$$c = \left[\# \right]$$

$$r: \rho \simeq 71 \text{ bits}$$

$$\chi = \left[\# \right]$$

$$\delta = \chi - 2r - m \mod p$$

$$c = \chi - \delta \left[\# \right]$$

- Only store seed and the small correction δ.
- Storage: ≃ 2700 bits instead of 2 · 10⁷ bits !

• Ciphertext: $c = q \cdot p + 2r + m$

 $\gamma \simeq 2 \cdot 10^7$ bits $p: \eta \simeq 2700$ bits $c = \left[\begin{array}{c} \\ \\ \\ \end{array} \right]$ $r: \rho \simeq 71$ bits • Compute a pseudo-random $\chi = f(seed)$ of γ bits. $\chi = \square \parallel$ $\delta = \chi - 2r - m \bmod p$ $c = \chi - \delta \square \parallel$

- Only store *seed* and the small correction δ .
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^7$ bits !

イロト イポト イヨト イヨト

• Ciphertext: $c = q \cdot p + 2r + m$

 $\gamma \simeq 2 \cdot 10^7$ bits $p: \eta \simeq 2700$ bits c = [] || $r: \rho \simeq 71$ bits • Compute a pseudo-random $\chi = f(seed)$ of γ bits. $\chi = \square \parallel$ $\delta = \chi - 2r - m \bmod p$ $c = \chi - \delta \square \parallel$

- Only store seed and the small correction δ .
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^7$ bits !

- 4 回 2 4 U 2 4 U

• Ciphertext: $c = q \cdot p + 2r + m$

 $\gamma \simeq 2 \cdot 10^7$ bits $p: \eta \simeq 2700$ bits c = [] || $r: \rho \simeq 71$ bits • Compute a pseudo-random $\chi = f(seed)$ of γ bits. $\chi = \boxed{\parallel} \parallel$ $\delta = \chi - 2r - m \bmod p$ $c = \chi - \delta []$

- Only store *seed* and the small correction δ .
- Storage: $\simeq 2\,700$ bits instead of $2\cdot 10^7$ bits !

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Compressed Public Key

< 回 > < 三 > < 三 >

Semantic security of DGHV

- Semantic security [GM82] for $m \in \{0, 1\}$:
 - Knowing *pk*, the distributions $E_{pk}(0)$ and $E_{pk}(1)$ are computationally hard to distinguish.
- The DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
 - This remains the case with the compressed public-key, under the random oracle model.

トイラトイラト

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Brute force attack on the noise
 - Given $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ with $|r_1| < 2^{\rho}$, guess r_1 and compute $gcd(x_0, x_1 r_1)$ to recover p.
 - Requires 2^{ρ} gcd computation
 - $\bullet\,$ Countermeasure: take a sufficiently large ρ

Improved attack against PACD [CN12]

- Given $x_0 = p \cdot q_0$ and many $x_i = p \cdot q_i + r_i$, find p.
- Improved attack in $\tilde{\mathcal{O}}(2^{\rho/2})$ [CN12]

$$p = \gcd\left(x_{0}, \prod_{i=0}^{2^{\rho}-1} (x_{1} - i) \mod x_{0}\right)$$

= gcd $\left(x_{0}, \prod_{a=0}^{m-1} \prod_{b=0}^{m-1} (x_{1} - b - m \cdot a) \mod x_{0}\right)$, where $m = 2^{\rho/2}$
= gcd $\left(x_{0}, \prod_{a=0}^{m-1} f(a) \mod x_{0}\right)$

•
$$f(y) := \prod_{b=0}^{m-1} (x_1 - b - m \cdot y) \mod x_0$$

伺 ト イヨト イヨト

Approximate GCD attack

- Consider t integers: $x_i = p \cdot q_i + r_i$ and $x_0 = p \cdot q_0$.
 - Consider a vector \vec{u} orthogonal to the x_i 's:

$$\sum_{i=1}^t u_i \cdot x_i = 0 \mod x_0$$

• This gives $\sum_{i=1}^{t} u_i \cdot r_i = 0 \mod p$.

- If the u_i's are sufficiently small, since the r_i's are small this equality will hold over ℤ.
 - Such vector \vec{u} can be found using LLL.
- By collecting many orthogonal vectors one can recover \vec{r} and eventually the secret key p
- Countermeasure
 - The size γ of the x_i's must be sufficiently large.

The DGHV scheme (simplified)

- Key generation:
 - Generate a set of τ public integers:

$$x_i = p \cdot q_i + r_i, \quad 1 \leq i \leq \tau$$

and $x_0 = p \cdot q_0$, where p is a secret prime.

- Size of p is η . Size of x_i is γ . Size of r_i is ρ .
- Encryption of a message m ∈ {0,1}:
 Generate random ε_i ← {0,1} and a random integer r in
 (2^{ρ'}, 2^{ρ'}) and output the ciphertext:

$$(-2^{\rho'}, 2^{\rho'})$$
, and output the ciphertext:

$$c = m + 2r + 2\sum_{i=1}^{\tau} \varepsilon_i \cdot x_i \mod x_0$$

• Decryption:

$$c \equiv m + 2r + 2\sum_{i=1}^{\tau} \varepsilon_i \cdot r_i \pmod{p}$$

• Output $m \leftarrow (c \mod p) \mod 2$

The DGHV scheme (simplified)

- Key generation:
 - Generate a set of τ public integers:

$$x_i = p \cdot q_i + r_i, \quad 1 \leq i \leq \tau$$

and $x_0 = p \cdot q_0$, where p is a secret prime.

- Size of p is η . Size of x_i is γ . Size of r_i is ρ .
- Encryption of a message $m \in \{0, 1\}$:
 - Generate random $\varepsilon_i \leftarrow \{0,1\}$ and a random integer r in $(-2^{\rho'}, 2^{\rho'})$, and output the ciphertext:

$$c = m + 2r + 2\sum_{i=1}^{\tau} \varepsilon_i \cdot x_i \mod x_0$$

• Decryption:

$$arepsilon\equiv m+2r+2\sum_{i=1}^rarepsilon_i\cdot r_i\pmod{p}$$

• Output $m \leftarrow (c \mod p) \mod 2$

The DGHV scheme (simplified)

- Key generation:
 - Generate a set of τ public integers:

$$x_i = p \cdot q_i + r_i, \quad 1 \leq i \leq \tau$$

and $x_0 = p \cdot q_0$, where p is a secret prime.

- Size of p is η . Size of x_i is γ . Size of r_i is ρ .
- Encryption of a message $m \in \{0, 1\}$:
 - Generate random $\varepsilon_i \leftarrow \{0,1\}$ and a random integer r in $(-2^{\rho'}, 2^{\rho'})$, and output the ciphertext:

$$c = m + 2r + 2\sum_{i=1}^{\tau} \varepsilon_i \cdot x_i \mod x_0$$

• Decryption:

$$c \equiv m + 2r + 2\sum_{i=1}^{\tau} \varepsilon_i \cdot r_i \pmod{p}$$

• Output $m \leftarrow (c \mod p) \mod 2$

•
$$c = m + 2 \cdot r' \mod p$$
 where $r' = r + \sum_{i=1}^{\tau} \varepsilon_i \cdot r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r'_2 + m_2 \cdot r'_1 + 2r'_1 \cdot r'_2) \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

•
$$c = m + 2 \cdot r' \mod p$$
 where $r' = r + \sum_{i=1}^{r} \varepsilon_i \cdot r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r'_2 + m_2 \cdot r'_1 + 2r'_1 \cdot r'_2) \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

•
$$c = m + 2 \cdot r' \mod p$$
 where $r' = r + \sum_{i=1}^{r} \varepsilon_i \cdot r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r_2' + m_2 \cdot r_1' + 2r_1' \cdot r_2') \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

•
$$c = m + 2 \cdot r' \mod p$$
 where $r' = r + \sum_{i=1}^{T} \varepsilon_i \cdot r_i$

- r' is the noise in the ciphertext.
- It must remain < p for correct decryption.
- Homomorphic addition: $c_3 \leftarrow c_1 + c_2 \mod x_0$
 - $c_1 + c_2 = m_1 + m_2 + 2(r'_1 + r'_2) \mod p$
 - Works if noise $r'_1 + r'_2$ still less than p.
- Homomorphic multiplication: $c_3 \leftarrow c_1 \cdot c_2 \mod x_0$
 - $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(m_1 \cdot r_2' + m_2 \cdot r_1' + 2r_1' \cdot r_2') \mod p$
 - Works if noise $r'_1 \cdot r'_2$ remains less than p.
- Somewhat homomorphic scheme
 - Noise grows with every homomorphic addition or multiplication.
 - This limits the degree of the polynomial that can be applied on ciphertexts.

- AP14 Jacob Alperin-Sheriff, Chris Peikert. Faster Bootstrapping with Polynomial Error. IACR Cryptol. ePrint Arch. 2014: 94 (2014)
- BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping. Electron. Colloquium Comput. Complex. 18: 111 (2011)
 - BV14 Zvika Brakerski, Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. ITCS 2014: 1-12
- CCK+13 Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi, Aaram Yun: Batch Fully Homomorphic Encryption over the Integers. EUROCRYPT 2013: 315-335
- CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song. Homomorphic Encryption for Arithmetic of Approximate Numbers. ASIACRYPT (1) 2017: 409-437

- 4 同 1 4 日 1 4 日 1

References

- CN12 Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for Approximate Common Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the Integers. EUROCRYPT 2012: 502-519
- CMNT11 Jean-Sébastien Coron, Avradip Mandal, David Naccache, Mehdi Tibouchi: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. CRYPTO 2011: 487-504
 - CNT12 Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi. Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. EUROCRYPT 2012: 446-464
- DGHV10 Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan. Fully Homomorphic Encryption over the Integers. EUROCRYPT 2010: 24-43
 - Gen09 Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009: 169-178

- GH11 Craig Gentry, Shai Halevi. Implementing Gentry's Fully-Homomorphic Encryption Scheme. EUROCRYPT 2011: 129-148
- GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013: 75-92
 - P99 Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. EUROCRYPT 1999: 223-238
 - R05 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005: 84-93
 - SV10 Nigel P. Smart, Frederik Vercauteren. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. Public Key Cryptography 2010: 420-443

< ロ > < 同 > < 回 > < 回 >