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@ Lecture 1: introduction to public-key cryptography
o RSA encryption, signatures and DH key exchange
@ Lecture 2: applications of public-key cryptography
e Security models.
e How to encrypt and sign securely with RSA. OAEP and PSS.
o Public-key infrastructure. Certificates, SSL protocol.
@ Lecture 3: cloud computing (this lecture)

e How to delegate computation thanks to fully homorphic
encryption
e A fully homomorphic encryption scheme
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e What is Fully Homomorphic Encryption (FHE) ?

o Basic properties
o Cloud computing on encrypted data: the server should process
the data without learning the data.

=

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



e What is Fully Homomorphic Encryption (FHE) ?
o Basic properties
o Cloud computing on encrypted data: the server should process
the data without learning the data.
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@ 4 generations of FHE:

o 1st gen: [Gen09], [DGHV10]: bootstrapping, slow

e 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).

o 3rd gen: [GSW13]: no modulus
switching, slow noise growth

o 4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



e What is Fully Homomorphic Encryption (FHE) ?
o Basic properties
o Cloud computing on encrypted data: the server should process
the data without learning the data.

€

@ 4 generations of FHE:

o 1st gen: [Gen09], [DGHV10]: bootstrapping, slow

e 2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).

o 3rd gen: [GSW13]: no modulus
switching, slow noise growth

o 4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Homomorphic Encryption

@ Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

o Normally, this is not possible.

AESk(mq) = 0x3c7317c6bcb634a4ad8479c64714£418
AESk(my) 0x7619884e1961b051belaad07dabeac2c
AESK ( my P m2) = 7
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Homomorphic Encryption

@ Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

o Normally, this is not possible.

AESk(mq) = 0x3c7317c6bcb634a4ad8479c64714£418
AESk(my) = 0x7619884e1961b051belaad07dabcac2c
AESK ( my P m2) = 7

@ For some cryptosystems with algebraic structure, this is
possible. For example RSA:
cg = m® mod N

= ¢y - = (mg-mp)® mod N
¢ = my,* mod N
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Homomorphic Encryption with RSA

@ Multiplicative property of RSA.

¢ = m® mod N
=c=c-c=(m-m)°modN
¢ = my* mod N

@ Homomorphic encryption: given ¢; and ¢, we can compute
the ciphertext ¢ for my - my mod N
e using only the public-key
o without knowing the plaintexts m; and ms.
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Homomorphism of RSA

@ RSA homomorphism: decryption function §(x) = x¢ mod N

d(car x @) =d(c1) x () (mod N)

Ciphertexts Z/NZ x Z)NZ ——— 7./NZ
Jé,o‘ lb‘
Plaintexts Z/NZ x 7./JNZ —>— 7/NZ
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Paillier Cryptosystem

e Additively homomorphic: Paillier cryptosystem [P99]

c1 = g™ mod N?
=16 = g’"1+"’2 M mod N2
o = g™ mod N?

Ciphertexts Z/N?Z x 7.)N?Z ———— 7./N?Z
l&,é Jo‘
Plaintexts Z/NZ x ZJNZ — 7/NZ
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Application of Paillier Cryptosystem

o Additively homomorphic: Paillier cryptosystem

c1 = g™ mod N?
=16 = gm1+m2 M mod N2
¢ = g™ mod N?

@ Application: e-voting.
o Voter i encrypts his vote m; € {0,1} into:

¢ =g™ z mod N?

o Votes can be aggregated using only the public-key:

C—HC, i zmodN2

e c is eventually decrypted to recover

m=>.m
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Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

c1 = m;® mod N
=c1-c=(my-m)® mod N
¢ = my* mod N

o Additively homomorphic: Paillier

c1 = g™ mod N?
= =gmtm N mod N2
¢ = g™ mod N2

@ Fully homomorphic: homomorphic for both addition and
multiplication

o Open problem until Gentry's
breakthrough in 2009.
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Fully homomorphic public-key encryption

@ We restrict ourselves to public-key encryption of a single bit:

o 0 7% 203ef6124 ... 23ab8716, 1 et b327653cl .. .db326536
e Encryption must be probabilistic.
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Fully homomorphic public-key encryption

@ We restrict ourselves to public-key encryption of a single bit:
o 0 7% 203ef6124 ... 23ab8736, 1 et b327653cl .. .db326514
e Encryption must be probabilistic.

@ Fully homomorphic property

o Given Epk(x) and Eyk(y), one can compute Epc(x @ y) and
Epk(x - y) without knowing the private-key.

X y X y Epk(X) Epk(y) Epk(x) Epk()’)
\C?/ \C?/ \(?/ \@/
XDy Xy Epk(x @ y) Epk(xy)
Plaintext world Ciphertext world
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Evaluation of any function

@ Universality

o We can evaluate homomorphically any boolean computable
function f : {0,1}" — {0,1}

G5
S

f(XlaX27X37 X4, X5)

Plaintext world
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E, Epi(x2)  Epk(xs) Epk(xa) Epk(xs)

d(x) Bl ()
N
@ 6@
OO O,
ONO

7

Epi(f(x1, x2, X3, X4, X5))

Ciphertext world
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Outsourcing computation (1)

(5]
O

@ Alice wants to outsource the computation of f(x)
e but she wants to keep x private
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Outsourcing computation (1)

¢ = Epk(xi) '

=

@ Alice wants to outsource the computation of f(x)
e but she wants to keep x private

@ She encrypts the bits x; of x into ¢; = Ep(x;) for her pk
e and she sends the ¢;'s to the server
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Outsourcing computation (2)

l_[_nu G = Epk(X,') R '

@ The server homomorphically evaluates f(x)
e by writing f(x) = f(x,...,x,) as a boolean circuit.
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Outsourcing computation (2)

l_[_nu G = Epk(X,') R '

¢ = En(f(x))

@ The server homomorphically evaluates f(x)
e by writing f(x) = f(x,...,x,) as a boolean circuit.
o Given Ep(x;), the server eventually obtains ¢ = Ep(f(x))
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Outsourcing computation (2)

m ¢ = Epi(xi) . '

¢ = Ep(f(x))

y = Dgk(c) = f(x)

@ The server homomorphically evaluates 7(x)

o by writing f(x) = f(x,...,X,) as a boolean circuit.

o Given Ep(x;), the server eventually obtains ¢ = Ep(f(x))
o Finally Alice decrypts c into y = f(x)

e The server does not learn x.

o Only Alice can decrypt to recover f(x).
o Alice could also keep f private.
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Fully Homomorphic Encryption: first generation

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
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Fully Homomorphic Encryption: first generation

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

@ 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
o Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

o Public-key compression [CNT12]
e Batch and homomorphic evaluation of AES [CCKLLTY13].
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The DGHV Scheme

o Ciphertext for m € {0,1}:

c=q-p+2r+m

where p is the secret-key, g and r are randoms.
@ Decryption:
(c mod p) mod2=m
o Parameters:
=~ 2-107 bits
p: n~ 2700 bits

c=[_J [ |

r: p~T71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption



Homomorphic Properties of DGHV

o Addition:

a=q-p+2n+m

=ca+o=4q- 2 + mi+ m
=g p+2rn+m 1t =g phartm+m

e ¢1 + ¢ is an encryption of m; + my; mod 2 = m; & my
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Homomorphic Properties of DGHV

o Addition:

a=q-p+2n+m

=ca+o=4q- 2 + mi+ m
Q=q- p+2rn+m pre =g phardm e m

e ¢1 + ¢ is an encryption of m; + my; mod 2 = m; & my
@ Multiplication:

a=q-p+2n+m

=ca-ao=q"- 2r" +my-m
Q=q- pt2rn+m L@ = pAr e mm

with
r" =21+ nmy + nm

@ C1 - ¢y is an encryption of my - my
o Noise becomes twice larger.
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Homomorphism of DGHV

o DGHYV ciphertext:
c=q-p+2r+m

@ Homomorphism: §(x) = (x mod p) mod 2
o only works if noise r is smaller than p

Ciphertexts Zx7 —"
J&a Jo
. ®, %
Plaintexts Lo X Lo ——— 7>
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Somewhat homomorphic scheme

@ The number of multiplications is limited.

o Noise grows with the number of multiplications.
e Noise must remain < p for correct decryption.
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Public-key Encryption with DGHV

@ For now, encryption requires the knowledge of the secret p:

c=q-p+2r+m
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Public-key Encryption with DGHV

@ For now, encryption requires the knowledge of the secret p:

c=q-p+2r+m

@ We can actually turn it into a public-key encryption scheme
o Using the additively homomorphic property

@ Public-key: a set of 7 encryptions of 0's.
Xj=qi-p+2r

@ Public-key encryption:

~
c:m+2r+25,~-x,-
i=1

for random ¢; € {0,1}.
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Bounding ciphertext size

o DGHV multiplication over Z

a=q-p+2n+m

/ /
=cC-C0=q -p+2r+m-m
G = qo-p+2m+ my 1-C=qg-p 1 2

o Problem: ciphertext size has doubled.
o Constant ciphertext size

o We publish an encryption of 0 without noise xp = qo - p
e We reduce the product modulo xq

C3=0C ' C mod X0
=q"-p+2r+m-m

o Ciphertext size remains constant
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Public-key size

v~ 2107 bits

x=[_| [ []
xx=[_| [ ]

T~ 10%

@ Public-key size:
o 7.7 =2-10" bits = 25 GB !
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DGHV Ciphertext Compression

o Ciphertext: c=qg-p+2r+m
4 = 2-107 bits

p: n =~ 2700 bits
-~

ce=[_J | [ |

-~
r: p~T71 bits
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DGHV Ciphertext Compression

o Ciphertext: c=qg-p+2r+m
4 = 2-107 bits

p: n =~ 2700 bits
-~

ce=[_J | [ |

r: p1_4—7>1 bits
e Compute a pseudo-random y = f(seed) of ~ bits.

x=[_1 |
0=x—2r—mmod p [ ]

c=x—-d[_] | [ |
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DGHV Ciphertext Compression

o Ciphertext: c=qg-p+2r+m
4 = 2-107 bits

p: n =~ 2700 bits
-~

ce=[_J | [ |

-~
r: p~T71 bits

e Compute a pseudo-random y = f(seed) of ~ bits.

x=[_1 |
0=x—2r—mmod p [ ]

c=x—-d[_] | [ |

e Only store seed and the small
correction §.
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DGHV Ciphertext Compression

o Ciphertext: c=qg-p+2r+m
4 = 2-107 bits

p: n =~ 2700 bits
-~

ce=[_J | [ |

-~
r: p~T71 bits

e Compute a pseudo-random y = f(seed) of ~ bits.

x=[_1 |
0=x—2r—mmod p [ ]

c=x—-d[_] | [ |

e Only store seed and the small
correction §.

e Storage: ~ 2700 bits instead of
2107 bits !
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Compressed Public Key

7y ~2-107 bits 1 ~ 2700 bits

-—

x=[_J [ 11 =[]
x=[_Jl [ 11 =[]

T~ 10%

xi=[_J . [] 5,-:|:|

x=_J | [ ] o =___ 1]
Old pk: 25 GB New pk: 3.4 MB !
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Semantic security of DGHV

e Semantic security [GM82] for m € {0,1}:
e Knowing pk, the distributions Ex(0) and Epx(1) are
computationally hard to distinguish.
@ The DGHYV scheme is semantically secure, under the
approximate-gcd assumption.
o Approximate-gcd problem: given a set of x; = q; - p+ r;,

recover p.
o This remains the case with the compressed public-key, under

the random oracle model.
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The approximate GCD assumption

o Efficient DGHYV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

e Given xg = p- go and polynomially many x; = p- q; + r;, find p.
@ Brute force attack on the noise

o Given xg =qo-pand x; = g1 - p+ n with || < 2°, guess ry

and compute gcd(xg, x1 — r1) to recover p.
o Requires 27 gcd computation
o Countermeasure: take a sufficiently large p
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Improved attack against PACD [CN12]

o Given xg = p- qo and many x; = p - q; + r;, find p.
o Improved attack in O(27/2) [CN12]

201
p = gcd (xo, H (x1 — i) mod x0>

i=0

m—1m—1
= gcd (Xo, H(xl—b—m~a) modx0>, where m = 2°/2
a=0 b=0

m—1
= gcd (xo7 H f(a) mod xo>
a=0

m—1

o f(y):=[](a—b—m-y)mod xg

o Evaluate the polynomial f(y) at m
points in time O(m) = O(2°/?)
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Approximate GCD attack

o Consider t integers: x; = p-qg; + ri and xo = p - qo.
o Consider a vector i orthogonal to the x;'s:

t
Zu;-x,-:o mod Xp

i=1

o This gives >, u;-r; =0 mod p.
o If the u;'s are sufficiently small, since the r;'s are small this
equality will hold over Z.
e Such vector U can be found using LLL.
@ By collecting many orthogonal vectors one can recover ¥ and
eventually the secret key p
@ Countermeasure

o The size v of the x;'s must be
sufficiently large.
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The DGHYV scheme (simplified)

o Key generation:
o Generate a set of 7 public integers:

xi=p-q+r, 1<i<7t

and xp = p - qo, where p is a secret prime.
o Size of pis n. Size of x; is 7. Size of r; is p.
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The DGHYV scheme (simplified)

o Key generation:
o Generate a set of 7 public integers:

xi=p-q+r, 1<i<7t
and xp = p - qo, where p is a secret prime.

o Size of pis n. Size of x; is 7. Size of r; is p.

@ Encryption of a message m € {0,1}:
o Generate random ¢; <— {0,1} and a random integer r in
(—2#,27"), and output the ciphertext:

.
c:m+2r+225;~x,- mod xg
i=1
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The DGHYV scheme (simplified)

o Key generation:
o Generate a set of 7 public integers:

xi=p-q+r, 1<i<7t

and xp = p - qo, where p is a secret prime.
o Size of pis n. Size of x; is 7. Size of r; is p.

@ Encryption of a message m € {0,1}:
o Generate random ¢; <— {0,1} and a random integer r in
(—2#,27"), and output the ciphertext:

.
c= m+2r+225;~x,- mod xg
i=1
@ Decryption:

.
czm—|—2r+225,~-r; (mod p)
i=1

o Output m « (¢ mod p) mod 2
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The DGHV scheme (contd.)

@ Noise in ciphertext:

-

ec=m+2-r modpwherer' =r+ > ¢ -r
i=1

o r’ is the noise in the ciphertext.

o It must remain < p for correct decryption.
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The DGHV scheme (contd.)

@ Noise in ciphertext:
-
ec=m+2-r modpwherer' =r+ > ¢ -r
i=1
o r’ is the noise in the ciphertext.
o It must remain < p for correct decryption.
@ Homomorphic addition: ¢3 < ¢ + ¢ mod X

e ctc=m+m+2(rf+r) modp
o Works if noise r{ + r; still less than p.
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The DGHV scheme (contd.)

@ Noise in ciphertext:

-
ec=m+2-r modpwherer' =r+ > ¢ -r
i=1
o r’ is the noise in the ciphertext.
o It must remain < p for correct decryption.
@ Homomorphic addition: ¢3 < ¢ + ¢ mod X
e ctc=m+m+2(rf+r) modp
o Works if noise r{ + r; still less than p.
@ Homomorphic multiplication: ¢3 < ¢; - ¢ mod xg
ec-a=m -m+2(my-ry+my-ri+2r-r}) modp
o Works if noise r{ - rj remains less than p.
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The DGHV scheme (contd.)

@ Noise in ciphertext:
-
ec=m+2-r modpwherer' =r+ > ¢ -r
i=1
o r’ is the noise in the ciphertext.
o It must remain < p for correct decryption.
@ Homomorphic addition: ¢3 < ¢ + ¢ mod X
e ctc=m+m+2(rf+r) modp
o Works if noise r{ + r; still less than p.
@ Homomorphic multiplication: ¢3 < ¢; - ¢ mod xg
ec-a=m -m+2(my-ry+my-ri+2r-r}) modp
o Works if noise r{ - rj remains less than p.
@ Somewhat homomorphic scheme
o Noise grows with every homomorphic
addition or multiplication.
e This limits the degree of the polynomial
that can be applied on ciphertexts.
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