
Public-key cryptography
Part 3: secure cloud computing

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Public-key cryptography

Outline

Lecture 1: introduction to public-key cryptography

RSA encryption, signatures and DH key exchange

Lecture 2: applications of public-key cryptography

Security models.
How to encrypt and sign securely with RSA. OAEP and PSS.
Public-key infrastructure. Certificates, SSL protocol.

Lecture 3: cloud computing (this lecture)

How to delegate computation thanks to fully homorphic
encryption
A fully homomorphic encryption scheme

Jean-Sébastien Coron Public-key cryptography

Introduction to Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Overview

What is Fully Homomorphic Encryption (FHE) ?

Basic properties
Cloud computing on encrypted data: the server should process
the data without learning the data.

4 generations of FHE:

1st gen: [Gen09], [DGHV10]: bootstrapping, slow
2nd gen: [BGV11]: more efficient, (R)LWE based, depth-linear
construction (modulus switching).
3rd gen: [GSW13]: no modulus
switching, slow noise growth
4th gen: [CKKS17]: approximate
computation

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)
e mod N

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption

Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)
e mod N

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Encryption with RSA

Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)
e mod N

Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

using only the public-key
without knowing the plaintexts m1 and m2.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of RSA

RSA homomorphism: decryption function δ(x) = xd mod N

δ(c1 × c2) = δ(c1)× δ(c2) (mod N)

Ciphertexts Z/NZ× Z/NZ Z/NZ

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

×

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem [P99]

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Ciphertexts Z/N2Z× Z/N2Z Z/N2Z

Plaintexts Z/NZ× Z/NZ Z/NZ

×

δ,δ δ

+

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Application of Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Application: e-voting.

Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

Votes can be aggregated using only the public-key:

c =
∏

i

ci = g

∑
i

mi · z mod N2

c is eventually decrypted to recover
m =

∑
i mi

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic encryption

Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)
e mod N

Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

Fully homomorphic: homomorphic for both addition and
multiplication

Open problem until Gentry’s
breakthrough in 2009.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

We restrict ourselves to public-key encryption of a single bit:

0
Epk−→ 203ef6124 . . . 23ab8716, 1

Epk−→ b327653c1 . . . db326516
Encryption must be probabilistic.

Fully homomorphic property

Given Epk(x) and Epk(y), one can compute Epk(x ⊕ y) and
Epk(x · y) without knowing the private-key.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully homomorphic public-key encryption

We restrict ourselves to public-key encryption of a single bit:

0
Epk−→ 203ef6124 . . . 23ab8716, 1

Epk−→ b327653c1 . . . db326516
Encryption must be probabilistic.

Fully homomorphic property

Given Epk(x) and Epk(y), one can compute Epk(x ⊕ y) and
Epk(x · y) without knowing the private-key.

x y

+

x ⊕ y

x y

×

x · y

Epk(x) Epk(y)

+

Epk(x ⊕ y)

Epk(x) Epk(y)

×

Epk(x · y)

Ciphertext worldPlaintext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Evaluation of any function
Universality

We can evaluate homomorphically any boolean computable
function f : {0, 1}n → {0, 1}

x1 x2 x3 x4 x5

+ × ×

× + +

× +

×

f (x1, x2, x3, x4, x5)

Epk(x1) Epk(x2) Epk(x3) Epk(x4) Epk(x5)

+ × ×

× + +

× +

×

Epk(f (x1, x2, x3, x4, x5))

Ciphertext worldPlaintext world

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

Alice wants to outsource the computation of f (x)

but she wants to keep x private

She encrypts the bits xi of x into ci = Epk(xi) for her pk

and she sends the ci ’s to the server

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (1)

ci = Epk(xi)

Alice wants to outsource the computation of f (x)

but she wants to keep x private

She encrypts the bits xi of x into ci = Epk(xi) for her pk

and she sends the ci ’s to the server

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

ci = Epk(xi)

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

ci = Epk(xi)

c = Epk(f (x))

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Outsourcing computation (2)

ci = Epk(xi)

c = Epk(f (x))

y = Dsk(c) = f (x)

The server homomorphically evaluates f (x)

by writing f (x) = f (x1, . . . , xn) as a boolean circuit.
Given Epk(xi), the server eventually obtains c = Epk(f (x))

Finally Alice decrypts c into y = f (x)

The server does not learn x .
Only Alice can decrypt to recover f (x).
Alice could also keep f private.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
Public-key compression [CNT12]
Batch and homomorphic evaluation of AES [CCKLLTY13].

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Fully Homomorphic Encryption: first generation

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
Public-key compression [CNT12]
Batch and homomorphic evaluation of AES [CCKLLTY13].

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV Scheme

Ciphertext for m ∈ {0, 1}:

c = q · p + 2r +m

where p is the secret-key, q and r are randoms.

Decryption:
(c mod p) mod 2 = m

Parameters:

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 + c2 = q′ · p + 2r ′ +m1 +m2

c1 + c2 is an encryption of m1 +m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 · c2 = q′′ · p + 2r ′′ +m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphic Properties of DGHV

Addition:

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 + c2 = q′ · p + 2r ′ +m1 +m2

c1 + c2 is an encryption of m1 +m2 mod 2 = m1 ⊕m2

Multiplication:

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 · c2 = q′′ · p + 2r ′′ +m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

c1 · c2 is an encryption of m1 ·m2

Noise becomes twice larger.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Homomorphism of DGHV

DGHV ciphertext:

c = q · p + 2r +m

Homomorphism: δ(x) = (x mod p) mod 2

only works if noise r is smaller than p

Ciphertexts Z× Z Z

Plaintexts Z2 × Z2 Z2

+,×

δ,δ δ

⊕,×

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Somewhat homomorphic scheme

The number of multiplications is limited.

Noise grows with the number of multiplications.
Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

For now, encryption requires the knowledge of the secret p:

c = q · p + 2r +m

We can actually turn it into a public-key encryption scheme

Using the additively homomorphic property

Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key Encryption with DGHV

For now, encryption requires the knowledge of the secret p:

c = q · p + 2r +m

We can actually turn it into a public-key encryption scheme

Using the additively homomorphic property

Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Bounding ciphertext size

DGHV multiplication over Z

c1 = q1 · p + 2r1 +m1

c2 = q2 · p + 2r2 +m2
⇒ c1 · c2 = q′ · p + 2r ′ +m1 ·m2

Problem: ciphertext size has doubled.

Constant ciphertext size

We publish an encryption of 0 without noise x0 = q0 · p
We reduce the product modulo x0

c3 = c1 · c2 mod x0

= q′′ · p + 2r ′ +m1 ·m2

Ciphertext size remains constant

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Public-key size

x1 =

γ ≃ 2 · 107 bits

x2 =

xi =

xτ =

τ ≃ 104

Public-key size:

τ · γ = 2 · 1011 bits = 25 GB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r +m

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ≃ 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r +m

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ≃ 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r +m

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ≃ 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

DGHV Ciphertext Compression

Ciphertext: c = q · p + 2r +m

c =

γ ≃ 2 · 107 bits

p : η ≃ 2700 bits

r : ρ ≃ 71 bits
Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

Only store seed and the small
correction δ.
Storage: ≃ 2 700 bits instead of
2 · 107 bits !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Compressed Public Key

x1 =

γ ≃ 2 · 107 bits

x2 =

xi =

xτ =

τ ≃ 104

Old pk : 25 GB

η ≃ 2 700 bits

δ1 =

δ2 =

δi =

δτ =

New pk : 3.4 MB !

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Semantic security of DGHV

Semantic security [GM82] for m ∈ {0, 1}:
Knowing pk, the distributions Epk(0) and Epk(1) are
computationally hard to distinguish.

The DGHV scheme is semantically secure, under the
approximate-gcd assumption.

Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.
This remains the case with the compressed public-key, under
the random oracle model.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The approximate GCD assumption

Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

Brute force attack on the noise

Given x0 = q0 · p and x1 = q1 · p + r1 with |r1| < 2ρ, guess r1
and compute gcd(x0, x1 − r1) to recover p.
Requires 2ρ gcd computation
Countermeasure: take a sufficiently large ρ

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Improved attack against PACD [CN12]

Given x0 = p · q0 and many xi = p · qi + ri , find p.

Improved attack in Õ(2ρ/2) [CN12]

p = gcd

(
x0,

2ρ−1∏

i=0

(x1 − i) mod x0

)

= gcd

(
x0,

m−1∏

a=0

m−1∏

b=0

(x1 − b −m · a) mod x0

)
, where m = 2ρ/2

= gcd

(
x0,

m−1∏

a=0

f (a) mod x0

)

f (y) :=
m−1∏
b=0

(x1 − b −m · y) mod x0

Evaluate the polynomial f (y) at m
points in time Õ(m) = Õ(2ρ/2)

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

Approximate GCD attack

Consider t integers: xi = p · qi + ri and x0 = p · q0.
Consider a vector u⃗ orthogonal to the xi ’s:

t∑

i=1

ui · xi = 0 mod x0

This gives
∑t

i=1 ui · ri = 0 mod p.

If the ui ’s are sufficiently small, since the ri ’s are small this
equality will hold over Z.

Such vector u⃗ can be found using LLL.

By collecting many orthogonal vectors one can recover r⃗ and
eventually the secret key p

Countermeasure

The size γ of the xi ’s must be
sufficiently large.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ′

, 2ρ
′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ′

, 2ρ
′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (simplified)

Key generation:
Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
Size of p is η. Size of xi is γ. Size of ri is ρ.

Encryption of a message m ∈ {0, 1}:
Generate random εi ← {0, 1} and a random integer r in
(−2ρ′

, 2ρ
′
), and output the ciphertext:

c = m + 2r + 2
τ∑

i=1

εi · xi mod x0

Decryption:

c ≡ m + 2r + 2
τ∑

i=1

εi · ri (mod p)

Output m← (c mod p) mod 2

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0
c1 + c2 = m1 +m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0
c1 · c2 = m1 ·m2 + 2(m1 · r ′2 +m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0
c1 + c2 = m1 +m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0
c1 · c2 = m1 ·m2 + 2(m1 · r ′2 +m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0
c1 + c2 = m1 +m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0
c1 · c2 = m1 ·m2 + 2(m1 · r ′2 +m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

The DGHV scheme (contd.)

Noise in ciphertext:

c = m + 2 · r ′ mod p where r ′ = r +
τ∑

i=1

εi · ri
r ′ is the noise in the ciphertext.
It must remain < p for correct decryption.

Homomorphic addition: c3 ← c1 + c2 mod x0
c1 + c2 = m1 +m2 + 2(r ′1 + r ′2) mod p
Works if noise r ′1 + r ′2 still less than p.

Homomorphic multiplication: c3 ← c1 · c2 mod x0
c1 · c2 = m1 ·m2 + 2(m1 · r ′2 +m2 · r ′1 + 2r ′1 · r ′2) mod p
Works if noise r ′1 · r ′2 remains less than p.

Somewhat homomorphic scheme

Noise grows with every homomorphic
addition or multiplication.
This limits the degree of the polynomial
that can be applied on ciphertexts.

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

AP14 Jacob Alperin-Sheriff, Chris Peikert. Faster Bootstrapping
with Polynomial Error. IACR Cryptol. ePrint Arch. 2014: 94
(2014)

BGV11 Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. Fully
Homomorphic Encryption without Bootstrapping. Electron.
Colloquium Comput. Complex. 18: 111 (2011)

BV14 Zvika Brakerski, Vinod Vaikuntanathan. Lattice-based FHE as
secure as PKE. ITCS 2014: 1-12

CCK+13 Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon
Sung Lee, Tancrède Lepoint, Mehdi Tibouchi, Aaram Yun:
Batch Fully Homomorphic Encryption over the Integers.
EUROCRYPT 2013: 315-335

CKKS17 Jung Hee Cheon, Andrey Kim, Miran Kim, Yong Soo Song.
Homomorphic Encryption for Arithmetic of Approximate
Numbers. ASIACRYPT (1) 2017: 409-437

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

CN12 Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for
Approximate Common Divisors: Breaking
Fully-Homomorphic-Encryption Challenges over the Integers.
EUROCRYPT 2012: 502-519

CMNT11 Jean-Sébastien Coron, Avradip Mandal, David Naccache,
Mehdi Tibouchi: Fully Homomorphic Encryption over the
Integers with Shorter Public Keys. CRYPTO 2011: 487-504

CNT12 Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi.
Public Key Compression and Modulus Switching for Fully
Homomorphic Encryption over the Integers. EUROCRYPT
2012: 446-464

DGHV10 Marten van Dijk, Craig Gentry, Shai Halevi, Vinod
Vaikuntanathan. Fully Homomorphic Encryption over the
Integers. EUROCRYPT 2010: 24-43

Gen09 Craig Gentry. Fully homomorphic encryption using ideal
lattices. STOC 2009: 169-178

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

References

GH11 Craig Gentry, Shai Halevi. Implementing Gentry’s
Fully-Homomorphic Encryption Scheme. EUROCRYPT 2011:
129-148

GSW13 Craig Gentry, Amit Sahai, Brent Waters. Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. CRYPTO (1) 2013:
75-92

P99 Pascal Paillier. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. EUROCRYPT 1999:
223-238

R05 Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. STOC 2005: 84-93

SV10 Nigel P. Smart, Frederik Vercauteren. Fully Homomorphic
Encryption with Relatively Small Key and Ciphertext Sizes.
Public Key Cryptography 2010: 420-443

Jean-Sébastien Coron Introduction to Fully Homomorphic Encryption

