
TP 4: the RSA algorithm

Jean-Sébastien Coron and David Galindo

Université du Luxembourg

1 RSA with artificially small parameters

The goal is to implement the RSA algorithm, but only with artificially small
parameters for simplicity.

For key-generation, define a function:

void keygen(int *p,int *q, int *e, int *d,int length)

that generates two random primes p and q of size length bit (in this imple-
mentation, one can take length=30), and that also generates the pair (e, d). A
random prime is generated by repeatedly generating a random integer and then
testing for primality, by trial division.

Implement the function:

int RSAencrypt(int m,int e,int n)

that takes as input a message m, a public exponent e and a RSA modu-
lus n and outputs the corresponding ciphertext c. Use the square-and-multiply
algorithm.

Similarly, implement the function:

int RSAdecrypt(int c,int d,int n)

that decrypts a ciphertext c. Check that decryption works.
In practice, RSA must be used with must larger parameters, typically the

RSA modulus must be at least 1024 bits long. One must then use an efficient
algorithm for prime number generation; this will be covered in the next courses.

2 H̊astad’s attack for related messages

Remember that the plain RSA public key encryption key is (n, e) where n = pq
is the product of two primer numbers and e and (p − 1)(q − 1) are coprimes.
Namely, RSA(m) = me mod n. Assume that the public keys of Alice, Bob and
Charlie are (nA, 3), (nB , 3) and (nC , 3) respectively. Suppose that Daniel wants
to send the same message m to Alice, Bob and Charlie. That is, he sends over
yA = m3 mod nA, yB = m3 mod nB and yC = m3 mod nC .

1. Show that it is possible to retrieve m from yA, yB , yC and without using the
corresponding secret keys.

2. Implement the above attack by using your keygen and RSAencrypt func-
tions.


